Energy Planning for Unmanned Over-Actuated ...
Document type :
Communication dans un congrès avec actes
Title :
Energy Planning for Unmanned Over-Actuated Road Vehicle
Author(s) :
Bensekrane, Ismail [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Kumar, Pushpendra [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Melingui, Achille [Auteur]
Coelen, Vincent [Auteur]
LAGIS-MOCIS
Amara, Yacine [Auteur]
Groupe de Recherche en Electrotechnique et Automatique du Havre [GREAH]
Merzouki, Rochdi [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Kumar, Pushpendra [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Melingui, Achille [Auteur]
Coelen, Vincent [Auteur]
LAGIS-MOCIS
Amara, Yacine [Auteur]
Groupe de Recherche en Electrotechnique et Automatique du Havre [GREAH]
Merzouki, Rochdi [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Conference title :
2018 IEEE Vehicle Power and Propulsion Conference (VPPC)
City :
Chicago
Country :
Etats-Unis d'Amérique
Start date of the conference :
2018-08-27
Journal title :
2018 IEEE Vehicle Power and Propulsion Conference (VPPC)
Publisher :
IEEE
English keyword(s) :
Power consumption estimation
Energy planning management
Neuro-Fuzzy modeling
Dynamic programming
Energy planning management
Neuro-Fuzzy modeling
Dynamic programming
HAL domain(s) :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Sciences de l'ingénieur [physics]/Energie électrique
Sciences de l'ingénieur [physics]/Energie électrique
English abstract : [en]
Energy planning for unmanned road vehicles (URV)s is an important step for the management of the autonomous driving. This energy planning depends on the model for power consumption estimation related to URVs. Generally ...
Show more >Energy planning for unmanned road vehicles (URV)s is an important step for the management of the autonomous driving. This energy planning depends on the model for power consumption estimation related to URVs. Generally URVs are over-actuated, and this property leads to multiple kinematic configurations for driving. Consequently, it adds more constraints and more complexity for energy planning. In this paper, a Neuro-Fuzzy model is developed for power consumption estimation for different driving modes configurations of URV. Furthermore, a dynamic programming algorithm is applied to find the optimal velocity profile, and the optimal configuration mode in each segment of the road for an over-actuated URV called RobuCAR, used for experimental validation.Show less >
Show more >Energy planning for unmanned road vehicles (URV)s is an important step for the management of the autonomous driving. This energy planning depends on the model for power consumption estimation related to URVs. Generally URVs are over-actuated, and this property leads to multiple kinematic configurations for driving. Consequently, it adds more constraints and more complexity for energy planning. In this paper, a Neuro-Fuzzy model is developed for power consumption estimation for different driving modes configurations of URV. Furthermore, a dynamic programming algorithm is applied to find the optimal velocity profile, and the optimal configuration mode in each segment of the road for an over-actuated URV called RobuCAR, used for experimental validation.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-02053362/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02053362/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02053362/document
- Open access
- Access the document
- document
- Open access
- Access the document
- 08604990.pdf
- Open access
- Access the document
- 08604990.pdf
- Open access
- Access the document