Consistent Discretization of Finite-time ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Consistent Discretization of Finite-time and Fixed-time Stable Systems
Auteur(s) :
Polyakov, Andrey [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Brogliato, Bernard [Auteur]
Modélisation, simulation et commande des systèmes dynamiques non lisses [TRIPOP]
Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Brogliato, Bernard [Auteur]
Modélisation, simulation et commande des systèmes dynamiques non lisses [TRIPOP]
Titre de la revue :
SIAM Journal on Control and Optimization
Pagination :
78-103
Éditeur :
Society for Industrial and Applied Mathematics
Date de publication :
2019
ISSN :
0363-0129
Discipline(s) HAL :
Informatique [cs]/Automatique
Résumé en anglais : [en]
Algorithms of implicit discretization for generalized homogeneous systems having discontinuity only at the origin are developed. They are based on the transformation of the original system to an equivalent one which admits ...
Lire la suite >Algorithms of implicit discretization for generalized homogeneous systems having discontinuity only at the origin are developed. They are based on the transformation of the original system to an equivalent one which admits an implicit or a semi-implicit discretization schemes preserving the stability properties of the continuous-time system. Namely, the discretized model remains finite-time stable (in the case of negative homogeneity degree), and practically fixed-time stable (in the case of positive homogeneity degree). The theoretical results are supported with numerical examples.Lire moins >
Lire la suite >Algorithms of implicit discretization for generalized homogeneous systems having discontinuity only at the origin are developed. They are based on the transformation of the original system to an equivalent one which admits an implicit or a semi-implicit discretization schemes preserving the stability properties of the continuous-time system. Namely, the discretized model remains finite-time stable (in the case of negative homogeneity degree), and practically fixed-time stable (in the case of positive homogeneity degree). The theoretical results are supported with numerical examples.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01838712v2/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01838712v2/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01838712v2/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- main.pdf
- Accès libre
- Accéder au document
- main.pdf
- Accès libre
- Accéder au document