Learning symmetrical model for head pose ...
Document type :
Communication dans un congrès avec actes
Title :
Learning symmetrical model for head pose estimation
Author(s) :
Dahmane, Afifa [Auteur]
FOX MIIRE [LIFL]
Laboratoire de Recherche en Intelligence Artificielle [Alger] [LRIA]
Larabi, Slimane [Auteur]
Laboratoire de Recherche en Intelligence Artificielle [Alger] [LRIA]
Djeraba, Chaabane [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancée - UAR 3380 [IRCICA]
FOX MIIRE [LIFL]
Bilasco, Ioan Marius [Auteur]
FOX MIIRE [LIFL]
FOX MIIRE [LIFL]
Laboratoire de Recherche en Intelligence Artificielle [Alger] [LRIA]
Larabi, Slimane [Auteur]
Laboratoire de Recherche en Intelligence Artificielle [Alger] [LRIA]
Djeraba, Chaabane [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancée - UAR 3380 [IRCICA]
FOX MIIRE [LIFL]
Bilasco, Ioan Marius [Auteur]

FOX MIIRE [LIFL]
Conference title :
ICPR - 21st International Conference on Pattern Recognition
City :
Tsukuba
Country :
Japon
Start date of the conference :
2012-11-11
Publication date :
2012
HAL domain(s) :
Informatique [cs]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Informatique [cs]/Base de données [cs.DB]
Informatique [cs]/Multimédia [cs.MM]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Informatique [cs]/Base de données [cs.DB]
Informatique [cs]/Multimédia [cs.MM]
English abstract : [en]
This paper tackles the problem of head pose estimation which has been considered an important research task for decades. The proposed approach selects a set of features from the symmetrical parts of the face. The size of ...
Show more >This paper tackles the problem of head pose estimation which has been considered an important research task for decades. The proposed approach selects a set of features from the symmetrical parts of the face. The size of bilateral symmetrical area of the face is a good indicator of the Yaw head pose. We train a Decision Tree model in order to recognize head pose with regard to the areas of symmetry. The approach does not need the location of interest points on face and is robust to partial occlusion. Tests were performed on a different dataset from that used for training the model and the results demonstrate that the change in the size of the regions that contain a bilateral symmetry provides accurate pose estimation.Show less >
Show more >This paper tackles the problem of head pose estimation which has been considered an important research task for decades. The proposed approach selects a set of features from the symmetrical parts of the face. The size of bilateral symmetrical area of the face is a good indicator of the Yaw head pose. We train a Decision Tree model in order to recognize head pose with regard to the areas of symmetry. The approach does not need the location of interest points on face and is robust to partial occlusion. Tests were performed on a different dataset from that used for training the model and the results demonstrate that the change in the size of the regions that contain a bilateral symmetry provides accurate pose estimation.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
European Project :
Collections :
Source :
Files
- https://hal.inria.fr/hal-00804181/document
- Open access
- Access the document
- https://hal.inria.fr/hal-00804181/document
- Open access
- Access the document
- https://hal.inria.fr/hal-00804181/document
- Open access
- Access the document
- ICPR12.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- document
- Open access
- Access the document
- ICPR12.pdf
- Open access
- Access the document