DPPy: Sampling Determinantal Point Processes ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
DPPy: Sampling Determinantal Point Processes with Python
Auteur(s) :
Gautier, Guillaume [Auteur]
Sequential Learning [SEQUEL]
Bardenet, Remi [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Valko, Michal [Auteur]
Sequential Learning [SEQUEL]
Sequential Learning [SEQUEL]
Bardenet, Remi [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Valko, Michal [Auteur]
Sequential Learning [SEQUEL]
Titre de la revue :
Journal of Machine Learning Research
Éditeur :
Microtome Publishing
Date de publication :
2019
ISSN :
1532-4435
Mot(s)-clé(s) en anglais :
determinantal point processes
sampling schemes
sampling schemes
Discipline(s) HAL :
Statistiques [stat]/Machine Learning [stat.ML]
Résumé en anglais : [en]
Determinantal point processes (DPPs) are specific probability distributions over clouds of points that are used as models and computational tools across physics, probability, statistics, and more recently machine learning. ...
Lire la suite >Determinantal point processes (DPPs) are specific probability distributions over clouds of points that are used as models and computational tools across physics, probability, statistics, and more recently machine learning. Sampling from DPPs is a challenge and therefore we present DPPy, a Python toolbox that gathers known exact and approximate sampling algorithms. The project is hosted on GitHub and equipped with an extensive documentation. This documentation takes the form of a short survey of DPPs and relates each mathematical property with DPPy objects.Lire moins >
Lire la suite >Determinantal point processes (DPPs) are specific probability distributions over clouds of points that are used as models and computational tools across physics, probability, statistics, and more recently machine learning. Sampling from DPPs is a challenge and therefore we present DPPy, a Python toolbox that gathers known exact and approximate sampling algorithms. The project is hosted on GitHub and equipped with an extensive documentation. This documentation takes the form of a short survey of DPPs and relates each mathematical property with DPPy objects.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01879424/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01879424/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01879424/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- gautier2018dppy.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- gautier2018dppy.pdf
- Accès libre
- Accéder au document