Inverse Kinematic Modeling of a class of ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Inverse Kinematic Modeling of a class of Continuum Bionic Handling Arm
Author(s) :
Lakhal, Othman [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Melingui, Achille [Auteur]
Chibani, Abdelhakim [Auteur]
LAGIS-MOCIS
Escande, Coralie [Auteur]
LAGIS-MOCIS
Merzouki, Rochdi [Auteur]
LAGIS-MOCIS

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Melingui, Achille [Auteur]
Chibani, Abdelhakim [Auteur]
LAGIS-MOCIS
Escande, Coralie [Auteur]
LAGIS-MOCIS
Merzouki, Rochdi [Auteur]
LAGIS-MOCIS
Conference title :
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
City :
Besançon
Country :
France
Start date of the conference :
2014-07-08
Publication date :
2014-07-11
HAL domain(s) :
Informatique [cs]/Robotique [cs.RO]
Informatique [cs]/Systèmes et contrôle [cs.SY]
Informatique [cs]/Modélisation et simulation
Informatique [cs]/Automatique
Informatique [cs]/Systèmes et contrôle [cs.SY]
Informatique [cs]/Modélisation et simulation
Informatique [cs]/Automatique
English abstract : [en]
— This paper presents a development of Inverse Kinematic Model (IKM) of a class of Continuum Bionic Handling Arm (CBHA). The modeling approach is inspired from a model of a hyper-redundant backbone-based manipulator, ...
Show more >— This paper presents a development of Inverse Kinematic Model (IKM) of a class of Continuum Bionic Handling Arm (CBHA). The modeling approach is inspired from a model of a hyper-redundant backbone-based manipulator, combined with an optimal placement of the backbones. The latter is obtained using an optimization algorithm, based on a Sequential Quadratic Program (SQP). The main interest of developing such model is to design an autonomous control of the CBHA. The high number of Degrees of Freedom (DoF) present on the continuum structure of the CBHA, makes difficult the synthesis of the analytical IKM for the overall arm. To resolve this issue, it is proposed to assimilate the CBHA's behavior to that of a hyper-redundant robot manipulator. This robot is represented by a concatenation of hybrid (parallel and serial) vertebrae along the vertebral column or backbones of the CBHA. The combination of all these vertebra allows the reconstruction with optimal configuration of the real posture of the continuum arm inside its workspace, with only the knowledge of the Cartesian coordinates of the robot pose. Simulations and experimental validation of the model demonstrate the efficiency of the modeling approach for this class of CBHA.Show less >
Show more >— This paper presents a development of Inverse Kinematic Model (IKM) of a class of Continuum Bionic Handling Arm (CBHA). The modeling approach is inspired from a model of a hyper-redundant backbone-based manipulator, combined with an optimal placement of the backbones. The latter is obtained using an optimization algorithm, based on a Sequential Quadratic Program (SQP). The main interest of developing such model is to design an autonomous control of the CBHA. The high number of Degrees of Freedom (DoF) present on the continuum structure of the CBHA, makes difficult the synthesis of the analytical IKM for the overall arm. To resolve this issue, it is proposed to assimilate the CBHA's behavior to that of a hyper-redundant robot manipulator. This robot is represented by a concatenation of hybrid (parallel and serial) vertebrae along the vertebral column or backbones of the CBHA. The combination of all these vertebra allows the reconstruction with optimal configuration of the real posture of the continuum arm inside its workspace, with only the knowledge of the Cartesian coordinates of the robot pose. Simulations and experimental validation of the model demonstrate the efficiency of the modeling approach for this class of CBHA.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :