Bimodal 2D-3D face recognition using a ...
Type de document :
Communication dans un congrès avec actes
Titre :
Bimodal 2D-3D face recognition using a two-stage fusion strategy
Auteur(s) :
Aissaoui, Amel [Auteur]
Université des Sciences et de la Technologie Houari Boumediene = University of Sciences and Technology Houari Boumediene [Alger] [USTHB]
Martinet, Jean [Auteur]
Université de Lille, Sciences et Technologies
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Université des Sciences et de la Technologie Houari Boumediene = University of Sciences and Technology Houari Boumediene [Alger] [USTHB]
Martinet, Jean [Auteur]
Université de Lille, Sciences et Technologies
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la manifestation scientifique :
International Conference on Image Processing Theory, Tools and Applications
Ville :
Orléans
Pays :
France
Date de début de la manifestation scientifique :
2015-11-10
Titre de l’ouvrage :
International Conference on Image Processing Theory, Tools and Applications
Titre de la revue :
International Conference on Image Processing Theory, Tools and Applications
Date de publication :
2015-11
Mot(s)-clé(s) en anglais :
Face recognition
LBP
DLBP
Bimodal fusion
LBP
DLBP
Bimodal fusion
Discipline(s) HAL :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Résumé en anglais : [en]
This paper presents a novel approach for bimodal face recognition. In our approach, faces are represented by both texture and depth images. The well known Local Binary Pattern (LBP) is used to describe the texture images. ...
Lire la suite >This paper presents a novel approach for bimodal face recognition. In our approach, faces are represented by both texture and depth images. The well known Local Binary Pattern (LBP) is used to describe the texture images. The depth faces representation is based on the Depth Local Binary Pattern, which is an extension of the the LBP descriptor allowing more discriminative power of smooth depth images. In order to perform the bimodal face recognition, a two-stage fusion scheme is proposed. It allows to take advantage of the complementarity of range and texture modalities at both descriptor (early fusion) and decision (late fusion) levels. We have conducted extensive experiments on several datasets in order to evaluate our approach. The obtained results show that our combination of texture and depth descriptors yields higher results than when taken separately or using an early/late fusion scheme.Lire moins >
Lire la suite >This paper presents a novel approach for bimodal face recognition. In our approach, faces are represented by both texture and depth images. The well known Local Binary Pattern (LBP) is used to describe the texture images. The depth faces representation is based on the Depth Local Binary Pattern, which is an extension of the the LBP descriptor allowing more discriminative power of smooth depth images. In order to perform the bimodal face recognition, a two-stage fusion scheme is proposed. It allows to take advantage of the complementarity of range and texture modalities at both descriptor (early fusion) and decision (late fusion) levels. We have conducted extensive experiments on several datasets in order to evaluate our approach. The obtained results show that our combination of texture and depth descriptors yields higher results than when taken separately or using an early/late fusion scheme.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :