Indian Buffet process dictionary learning ...
Document type :
Communication dans un congrès avec actes
DOI :
Title :
Indian Buffet process dictionary learning for image inpainting
Author(s) :
Dang, Hong [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Chainais, Pierre [Auteur]
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Chainais, Pierre [Auteur]
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Conference title :
IEEE Workshop on Statistical Signal Processing
City :
Palma de Mallorca
Country :
Espagne
Start date of the conference :
2016-06-26
Journal title :
Proceedings of the IEEE Workshop on Statistical Signal Processing
Publication date :
2016
English keyword(s) :
sparse representations
inverse problems
Indian Buffet Process
Dictionary Learning
inverse problems
Indian Buffet Process
Dictionary Learning
HAL domain(s) :
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Statistiques [stat]/Machine Learning [stat.ML]
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Traitement des images [eess.IV]
Statistiques [stat]/Machine Learning [stat.ML]
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Traitement des images [eess.IV]
English abstract : [en]
Ill-posed inverse problems call for adapted models to define relevant solutions. Dictionary learning for sparse representation is often an efficient approach. In many methods, the size of the dictionary is fixed in advance ...
Show more >Ill-posed inverse problems call for adapted models to define relevant solutions. Dictionary learning for sparse representation is often an efficient approach. In many methods, the size of the dictionary is fixed in advance and the noise level as well as regularization parameters need some tuning. Indian Buffet process dictionary learning (IBP-DL) is a Bayesian non para-metric approach which permits to learn a dictionary with an adapted number of atoms. The noise and sparsity levels are also inferred so that the proposed approach is really non para-metric: no parameters tuning is needed. This work adapts IBP-DL to the problem of image inpainting by proposing an accelerated collapsed Gibbs sampler. Experimental results illustrate the relevance of this approach.Show less >
Show more >Ill-posed inverse problems call for adapted models to define relevant solutions. Dictionary learning for sparse representation is often an efficient approach. In many methods, the size of the dictionary is fixed in advance and the noise level as well as regularization parameters need some tuning. Indian Buffet process dictionary learning (IBP-DL) is a Bayesian non para-metric approach which permits to learn a dictionary with an adapted number of atoms. The noise and sparsity levels are also inferred so that the proposed approach is really non para-metric: no parameters tuning is needed. This work adapts IBP-DL to the problem of image inpainting by proposing an accelerated collapsed Gibbs sampler. Experimental results illustrate the relevance of this approach.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-01433627/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01433627/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01433627/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Dang_Chainais_SSP2016_final.pdf
- Open access
- Access the document
- Dang_Chainais_SSP2016_final.pdf
- Open access
- Access the document