Indian Buffet process dictionary learning ...
Type de document :
Communication dans un congrès avec actes
DOI :
Titre :
Indian Buffet process dictionary learning for image inpainting
Auteur(s) :
Dang, Hong [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Chainais, Pierre [Auteur]
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Chainais, Pierre [Auteur]
Centrale Lille
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la manifestation scientifique :
IEEE Workshop on Statistical Signal Processing
Ville :
Palma de Mallorca
Pays :
Espagne
Date de début de la manifestation scientifique :
2016-06-26
Titre de la revue :
Proceedings of the IEEE Workshop on Statistical Signal Processing
Date de publication :
2016
Mot(s)-clé(s) en anglais :
sparse representations
inverse problems
Indian Buffet Process
Dictionary Learning
inverse problems
Indian Buffet Process
Dictionary Learning
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Statistiques [stat]/Machine Learning [stat.ML]
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Traitement des images [eess.IV]
Statistiques [stat]/Machine Learning [stat.ML]
Mathématiques [math]/Statistiques [math.ST]
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Traitement des images [eess.IV]
Résumé en anglais : [en]
Ill-posed inverse problems call for adapted models to define relevant solutions. Dictionary learning for sparse representation is often an efficient approach. In many methods, the size of the dictionary is fixed in advance ...
Lire la suite >Ill-posed inverse problems call for adapted models to define relevant solutions. Dictionary learning for sparse representation is often an efficient approach. In many methods, the size of the dictionary is fixed in advance and the noise level as well as regularization parameters need some tuning. Indian Buffet process dictionary learning (IBP-DL) is a Bayesian non para-metric approach which permits to learn a dictionary with an adapted number of atoms. The noise and sparsity levels are also inferred so that the proposed approach is really non para-metric: no parameters tuning is needed. This work adapts IBP-DL to the problem of image inpainting by proposing an accelerated collapsed Gibbs sampler. Experimental results illustrate the relevance of this approach.Lire moins >
Lire la suite >Ill-posed inverse problems call for adapted models to define relevant solutions. Dictionary learning for sparse representation is often an efficient approach. In many methods, the size of the dictionary is fixed in advance and the noise level as well as regularization parameters need some tuning. Indian Buffet process dictionary learning (IBP-DL) is a Bayesian non para-metric approach which permits to learn a dictionary with an adapted number of atoms. The noise and sparsity levels are also inferred so that the proposed approach is really non para-metric: no parameters tuning is needed. This work adapts IBP-DL to the problem of image inpainting by proposing an accelerated collapsed Gibbs sampler. Experimental results illustrate the relevance of this approach.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-01433627/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01433627/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01433627/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Dang_Chainais_SSP2016_final.pdf
- Accès libre
- Accéder au document
- Dang_Chainais_SSP2016_final.pdf
- Accès libre
- Accéder au document