Interpreting evidential distances by ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Interpreting evidential distances by connecting them to partial orders: Application to belief function approximation
Auteur(s) :
Klein, John [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Destercke, Sébastien [Auteur]
Laboratoire d'Excellence "Maîtrise des Systèmes de Systèmes Technologiques" [Labex MS2T]
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] [Heudiasyc]
Colot, Olivier [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Destercke, Sébastien [Auteur]
Laboratoire d'Excellence "Maîtrise des Systèmes de Systèmes Technologiques" [Labex MS2T]
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] [Heudiasyc]
Colot, Olivier [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la revue :
International Journal of Approximate Reasoning
Pagination :
15-33
Éditeur :
Elsevier
Date de publication :
2016-04
ISSN :
0888-613X
Mot(s)-clé(s) en anglais :
Belief functions
distance
metric
partial order
semantics
convex optimization
distance
metric
partial order
semantics
convex optimization
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
The many distances defined in evidence theory provide instrumental tools to analyze and compare mass functions: they have been proposed to measure conflict, dependence or similarity in different fields (information fusion ...
Lire la suite >The many distances defined in evidence theory provide instrumental tools to analyze and compare mass functions: they have been proposed to measure conflict, dependence or similarity in different fields (information fusion , risk analysis, machine learning). Many of their mathematical properties have been studied in the past years, yet a remaining question is to know what distance to choose in a particular problem. As a step towards answering this question, we propose to interpret distances by looking at their consistency with partial orders possessing a clear semantic. We focus on the case of in-formational partial order and on the problem of approximating initial belief functions by simpler ones. Doing so, we study which distances can be used to measure the difference of informational content between two mass functions, and which distances cannot.Lire moins >
Lire la suite >The many distances defined in evidence theory provide instrumental tools to analyze and compare mass functions: they have been proposed to measure conflict, dependence or similarity in different fields (information fusion , risk analysis, machine learning). Many of their mathematical properties have been studied in the past years, yet a remaining question is to know what distance to choose in a particular problem. As a step towards answering this question, we propose to interpret distances by looking at their consistency with partial orders possessing a clear semantic. We focus on the case of in-formational partial order and on the problem of approximating initial belief functions by simpler ones. Doing so, we study which distances can be used to measure the difference of informational content between two mass functions, and which distances cannot.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-01263550/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01263550/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01263550/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- submission_v0.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- submission_v0.pdf
- Accès libre
- Accéder au document