A physically admissible parameterization ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
A physically admissible parameterization for differential Mueller matrix of uniform media
Author(s) :
Devlaminck, Vincent [Auteur]
Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Terrier, Patrick [Auteur]
LAGIS-SI
Charbois, Jean-Michel [Auteur]
LAGIS-SI

Laboratoire d'Automatique, Génie Informatique et Signal [LAGIS]
Terrier, Patrick [Auteur]
LAGIS-SI
Charbois, Jean-Michel [Auteur]

LAGIS-SI
Journal title :
Optics Letters
Pages :
1410-1412
Publisher :
Optical Society of America - OSA Publishing
Publication date :
2013
ISSN :
0146-9592
HAL domain(s) :
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Physique [physics]/Physique [physics]/Optique [physics.optics]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Physique [physics]/Physique [physics]/Optique [physics.optics]
English abstract : [en]
In this letter, we address the question of physical validity of differential Mueller matrix. A new parameterization of entries of this differential matrix is proposed. It ensures that the generators associated to depolarization ...
Show more >In this letter, we address the question of physical validity of differential Mueller matrix. A new parameterization of entries of this differential matrix is proposed. It ensures that the generators associated to depolarization terms lead to physical Mueller matrices as for the nondepolarizing terms. A general expression for the depolarizing part of the differential matrix is found and a way to compute the non-linear relations between the parameters is proposed.Show less >
Show more >In this letter, we address the question of physical validity of differential Mueller matrix. A new parameterization of entries of this differential matrix is proposed. It ensures that the generators associated to depolarization terms lead to physical Mueller matrices as for the nondepolarizing terms. A general expression for the depolarizing part of the differential matrix is found and a way to compute the non-linear relations between the parameters is proposed.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :