Multi-objective local search for mining ...
Document type :
Communication dans un congrès avec actes
Title :
Multi-objective local search for mining Pittsburgh classification rules
Author(s) :
Jacques, Julie [Auteur]
Alicante [Seclin]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Taillard, Julien [Auteur]
Alicante [Seclin]
Delerue, David [Auteur]
Alicante [Seclin]
Jourdan, Laetitia [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Dhaenens, Clarisse [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Alicante [Seclin]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Taillard, Julien [Auteur]
Alicante [Seclin]
Delerue, David [Auteur]
Alicante [Seclin]
Jourdan, Laetitia [Auteur]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Dhaenens, Clarisse [Auteur]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Laboratoire d'Informatique Fondamentale de Lille [LIFL]
Conference title :
International Conference on Metaheuristics and Nature Inspired Computing
City :
Port El-Kantaoui
Country :
Tunisie
Start date of the conference :
2012-10-27
HAL domain(s) :
Computer Science [cs]/Operations Research [math.OC]
English abstract : [en]
This abstract presents a modeling of the classification rule mining problem as a dominance-based multi-objective local search, with Pittsburgh solution encoding, using accuracy and the number of terms as objectives. This ...
Show more >This abstract presents a modeling of the classification rule mining problem as a dominance-based multi-objective local search, with Pittsburgh solution encoding, using accuracy and the number of terms as objectives. This solution is then compared to results from literature of 22 rule mining classification algorithms.Show less >
Show more >This abstract presents a modeling of the classification rule mining problem as a dominance-based multi-objective local search, with Pittsburgh solution encoding, using accuracy and the number of terms as objectives. This solution is then compared to results from literature of 22 rule mining classification algorithms.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-00749712/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-00749712/document
- Open access
- Access the document
- document
- Open access
- Access the document
- meta2012-rulemining-acc.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- meta2012-rulemining-acc.pdf
- Open access
- Access the document