Road Selection using Multi-Criteria Fusion ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Road Selection using Multi-Criteria Fusion for the Roadmap-Matching Problem
Auteur(s) :
El Badaoui El Najjar, Maan [Auteur correspondant]
Systèmes Tolérants aux Fautes [STF]
Bonnifait, Philippe [Auteur]
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] [Heudiasyc]

Systèmes Tolérants aux Fautes [STF]
Bonnifait, Philippe [Auteur]
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] [Heudiasyc]
Titre de la revue :
IEEE Transactions on Intelligent Transportation Systems
Pagination :
279-291
Éditeur :
IEEE
Date de publication :
2007
ISSN :
1524-9050
Mot(s)-clé(s) en anglais :
Belief theory
Geographical Information System (GIS)
Global Positioning System (GPS)
localization
sensor fusion
Geographical Information System (GIS)
Global Positioning System (GPS)
localization
sensor fusion
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
This paper presents a road selection strategy for novel road-matching methods that are designed to support real-time navigational features within Advanced Driving-Assistance Systems (ADAS). Selecting the most likely ...
Lire la suite >This paper presents a road selection strategy for novel road-matching methods that are designed to support real-time navigational features within Advanced Driving-Assistance Systems (ADAS). Selecting the most likely segment(s) is a crucial issue for the road-matching problem. The selection strategy merges several criteria using Belief theory. Particular attention is given to the development of belief functions from measurements and estimations of relative distances, headings, and velocities. Experimental results using data from antilock brake system sensors, the differential Global Positioning System receiver, and the accurate digital roadmap illustrate the performances of this approach, particularly in ambiguous situations.Lire moins >
Lire la suite >This paper presents a road selection strategy for novel road-matching methods that are designed to support real-time navigational features within Advanced Driving-Assistance Systems (ADAS). Selecting the most likely segment(s) is a crucial issue for the road-matching problem. The selection strategy merges several criteria using Belief theory. Particular attention is given to the development of belief functions from measurements and estimations of relative distances, headings, and velocities. Experimental results using data from antilock brake system sensors, the differential Global Positioning System receiver, and the accurate digital roadmap illustrate the performances of this approach, particularly in ambiguous situations.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/inria-00172595v2/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/inria-00172595v2/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/inria-00172595v2/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/inria-00172595v2/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- ITS_submission_Final.pdf
- Accès libre
- Accéder au document