Microstructural Evidence for Grain Boundary ...
Type de document :
Article dans une revue scientifique
DOI :
URL permanente :
Titre :
Microstructural Evidence for Grain Boundary Migration and Dynamic Recrystallization in Experimentally Deformed Forsterite Aggregates
Auteur(s) :
Bollinger, Caroline [Auteur]
NZOGANG, Billy Clitton [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Mussi, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bouquerel, Jeremie [Auteur]
Molodov, Dmitri [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Cordier, Patrick [Auteur]
NZOGANG, Billy Clitton [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Mussi, Alexandre [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bouquerel, Jeremie [Auteur]
Molodov, Dmitri [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Cordier, Patrick [Auteur]
Titre de la revue :
Minerals
Nom court de la revue :
Minerals
Numéro :
9
Pagination :
17
Éditeur :
MDPI AG
Date de publication :
2018-12-27
ISSN :
2075-163X
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Résumé en anglais : [en]
Plastic deformation of peridotites in the mantle involves large strains. Orthorhombic olivine does not have enough slip systems to satisfy the von Mises criterion, leading to strong hardening when polycrystals are deformed ...
Lire la suite >Plastic deformation of peridotites in the mantle involves large strains. Orthorhombic olivine does not have enough slip systems to satisfy the von Mises criterion, leading to strong hardening when polycrystals are deformed at rather low temperatures (i.e., below 1200 °C). In this study, we focused on the recovery mechanisms involving grain boundaries and recrystallization. We investigated forsterite samples deformed at large strains at 1100 °C. The deformed microstructures were characterized by transmission electron microscopy using orientation mapping techniques (ACOM-TEM). With this technique, we increased the spatial resolution of characterization compared to standard electron backscatter diffraction (EBSD) maps to further decipher the microstructures at nanoscale. After a plastic strain of 25%, we found pervasive evidence for serrated grain and subgrain boundaries. We interpreted these microstructural features as evidence of occurrences of grain boundary migration mechanisms. Evaluating the driving forces for grain/subgrain boundary motion, we found that the surface tension driving forces were often greater than the strain energy driving force. At larger strains (40%), we found pervasive evidence for discontinuous dynamic recrystallization (dDRX), with nucleation of new grains at grain boundaries. The observations reveal that subgrain migration and grain boundary bulging contribute to the nucleation of new grains. These mechanisms are probably critical to allow peridotitic rocks to achieve large strains under a steady-state regime in the lithospheric mantle.Lire moins >
Lire la suite >Plastic deformation of peridotites in the mantle involves large strains. Orthorhombic olivine does not have enough slip systems to satisfy the von Mises criterion, leading to strong hardening when polycrystals are deformed at rather low temperatures (i.e., below 1200 °C). In this study, we focused on the recovery mechanisms involving grain boundaries and recrystallization. We investigated forsterite samples deformed at large strains at 1100 °C. The deformed microstructures were characterized by transmission electron microscopy using orientation mapping techniques (ACOM-TEM). With this technique, we increased the spatial resolution of characterization compared to standard electron backscatter diffraction (EBSD) maps to further decipher the microstructures at nanoscale. After a plastic strain of 25%, we found pervasive evidence for serrated grain and subgrain boundaries. We interpreted these microstructural features as evidence of occurrences of grain boundary migration mechanisms. Evaluating the driving forces for grain/subgrain boundary motion, we found that the surface tension driving forces were often greater than the strain energy driving force. At larger strains (40%), we found pervasive evidence for discontinuous dynamic recrystallization (dDRX), with nucleation of new grains at grain boundaries. The observations reveal that subgrain migration and grain boundary bulging contribute to the nucleation of new grains. These mechanisms are probably critical to allow peridotitic rocks to achieve large strains under a steady-state regime in the lithospheric mantle.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
ENSCL
CNRS
INRA
ENSCL
CNRS
INRA
Collections :
Équipe(s) de recherche :
Métallurgie Physique et Génie des Matériaux
Plasticité
Plasticité
Date de dépôt :
2019-01-11T11:07:09Z
2019-03-22T09:17:33Z
2019-05-23T12:46:17Z
2019-09-05T09:39:16Z
2019-03-22T09:17:33Z
2019-05-23T12:46:17Z
2019-09-05T09:39:16Z
Fichiers
- Bollinger-et-al(2019)OlivineGBM-DRX.pdf
- Version éditeur
- Accès libre
- Accéder au document