Bayesian Compressive Sensing for Clustered ...
Type de document :
Communication dans un congrès avec actes
Titre :
Bayesian Compressive Sensing for Clustered Sparse Signals
Auteur(s) :
Yu, Lei [Auteur]
Algebra for Digital Identification and Estimation [ALIEN]
Électronique et Commande des Systèmes Laboratoire [ECS-Lab]
Sun, Hong [Auteur]
Barbot, Jean-Pierre [Auteur]
Algebra for Digital Identification and Estimation [ALIEN]
Électronique et Commande des Systèmes Laboratoire [ECS-Lab]
Zheng, Gang [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Algebra for Digital Identification and Estimation [ALIEN]
Électronique et Commande des Systèmes Laboratoire [ECS-Lab]
Sun, Hong [Auteur]
Barbot, Jean-Pierre [Auteur]
Algebra for Digital Identification and Estimation [ALIEN]
Électronique et Commande des Systèmes Laboratoire [ECS-Lab]
Zheng, Gang [Auteur]

Non-Asymptotic estimation for online systems [NON-A]
Titre de la manifestation scientifique :
ICASSP
Ville :
Prague
Pays :
République tchèque
Date de début de la manifestation scientifique :
2011-05-22
Discipline(s) HAL :
Informatique [cs]/Traitement des images [eess.IV]
Résumé en anglais : [en]
In traditional framework of Compressive Sensing (CS), only sparse prior on the property of signals in time or frequency domain is adopted to guarantee the exact inverse recovery. Besides sparse prior, cluster prior is ...
Lire la suite >In traditional framework of Compressive Sensing (CS), only sparse prior on the property of signals in time or frequency domain is adopted to guarantee the exact inverse recovery. Besides sparse prior, cluster prior is introduced in this paper in order to investigate a class of structural sparse signals, called clustered sparse signals. A hierarchical statistical model is employed via Bayesian approach to model both the sparse prior and cluster prior and Markov Chain Monte Carlo (MCMC) sampling is implemented for the inference. Unlike the state-of-the-art algorithms based on the cluster prior, the proposed algorithm solves the inverse problem without any prior knowledge of the cluster parameters, even without the knowledge of the sparsity. The experimental results show that the proposed algorithm outperforms many state-of-the-art algorithms.Lire moins >
Lire la suite >In traditional framework of Compressive Sensing (CS), only sparse prior on the property of signals in time or frequency domain is adopted to guarantee the exact inverse recovery. Besides sparse prior, cluster prior is introduced in this paper in order to investigate a class of structural sparse signals, called clustered sparse signals. A hierarchical statistical model is employed via Bayesian approach to model both the sparse prior and cluster prior and Markov Chain Monte Carlo (MCMC) sampling is implemented for the inference. Unlike the state-of-the-art algorithms based on the cluster prior, the proposed algorithm solves the inverse problem without any prior knowledge of the cluster parameters, even without the knowledge of the sparsity. The experimental results show that the proposed algorithm outperforms many state-of-the-art algorithms.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Non spécifiée
Vulgarisation :
Non
Collections :
Source :