Gene Selection in Cancer Classification ...
Type de document :
Communication dans un congrès avec actes
Titre :
Gene Selection in Cancer Classification using GPSO/SVM and GA/SVM Hybrid Algorithms
Auteur(s) :
Alba, Enrique [Auteur]
Departamento Lenguajes y Ciencias de la Computación [Malaga] [LCC]
Garcia-Nieto, José [Auteur]
Departamento Lenguajes y Ciencias de la Computación [Malaga] [LCC]
Jourdan, Laetitia [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Talbi, El-Ghazali [Auteur]
Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Departamento Lenguajes y Ciencias de la Computación [Malaga] [LCC]
Garcia-Nieto, José [Auteur]
Departamento Lenguajes y Ciencias de la Computación [Malaga] [LCC]
Jourdan, Laetitia [Auteur]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Talbi, El-Ghazali [Auteur]

Parallel Cooperative Multi-criteria Optimization [DOLPHIN]
Titre de la manifestation scientifique :
Congress on Evolutionary Computation
Ville :
Singapor
Pays :
Singapour
Date de début de la manifestation scientifique :
2007-09
Éditeur :
IEEE
Date de publication :
2007
Discipline(s) HAL :
Mathématiques [math]/Combinatoire [math.CO]
Résumé en anglais : [en]
In this work we compare the use of a Particle Swarm Optimization (PSO) and a Genetic Algorithm (GA) (both augmented with Support Vector Machines SVM) for the classification of high dimensional Microarray Data. Both algorithms ...
Lire la suite >In this work we compare the use of a Particle Swarm Optimization (PSO) and a Genetic Algorithm (GA) (both augmented with Support Vector Machines SVM) for the classification of high dimensional Microarray Data. Both algorithms are used for finding small samples of informative genes amongst thousands of them. A SVM classifier with 10- fold cross-validation is applied in order to validate and evaluate the provided solutions. A first contribution is to prove that PSOSVM is able to find interesting genes and to provide classification competitive performance. Specifically, a new version of PSO, called Geometric PSO, is empirically evaluated for the first time in this work using a binary representation in Hamming space. In this sense, a comparison of this approach with a new GASVM and also with other existing methods of literature is provided. A second important contribution consists in the actual discovery of new and challenging results on six public datasets identifying significant in the development of a variety of cancers (leukemia, breast, colon, ovarian, prostate, and lung).Lire moins >
Lire la suite >In this work we compare the use of a Particle Swarm Optimization (PSO) and a Genetic Algorithm (GA) (both augmented with Support Vector Machines SVM) for the classification of high dimensional Microarray Data. Both algorithms are used for finding small samples of informative genes amongst thousands of them. A SVM classifier with 10- fold cross-validation is applied in order to validate and evaluate the provided solutions. A first contribution is to prove that PSOSVM is able to find interesting genes and to provide classification competitive performance. Specifically, a new version of PSO, called Geometric PSO, is empirically evaluated for the first time in this work using a binary representation in Hamming space. In this sense, a comparison of this approach with a new GASVM and also with other existing methods of literature is provided. A second important contribution consists in the actual discovery of new and challenging results on six public datasets identifying significant in the development of a variety of cancers (leukemia, breast, colon, ovarian, prostate, and lung).Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/inria-00269967/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/inria-00269967/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- cec2007ok.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- cec2007ok.pdf
- Accès libre
- Accéder au document