Linear Regression in High Dimension and\/or ...
Type de document :
Partie d'ouvrage
DOI :
URL permanente :
Titre :
Linear Regression in High Dimension and\/or for Correlated Inputs
Auteur(s) :
Éditeur(s) ou directeur(s) scientifique(s) :
D; Fraix-Burnet
D. Valls-Gabaud
D. Valls-Gabaud
Titre de l’ouvrage :
Statistics for Astrophysics Methods and Applications of the Regression
Numéro :
66
Pagination :
149-165
Éditeur :
EDP Sciences
Date de publication :
2014
ISBN :
978-2-7598-1729-0
Discipline(s) HAL :
Physique [physics]/Astrophysique [astro-ph]
Résumé en anglais : [en]
Ordinary least square is the common way to estimate linear regression models. When inputs are correlated or when they are too numerous, regression methods using derived inputs directions or shrinkage methods can be efficient ...
Lire la suite >Ordinary least square is the common way to estimate linear regression models. When inputs are correlated or when they are too numerous, regression methods using derived inputs directions or shrinkage methods can be efficient alternatives. Methods using derived inputs directions build new uncorrelated variables as linear combination of the initial inputs, whereas shrinkage methods introduce regularization and variable selection by penalizing the usual least square criterion. Both kinds of methods are presented and illustrated thanks to the R software on an astronomical dataset.Lire moins >
Lire la suite >Ordinary least square is the common way to estimate linear regression models. When inputs are correlated or when they are too numerous, regression methods using derived inputs directions or shrinkage methods can be efficient alternatives. Methods using derived inputs directions build new uncorrelated variables as linear combination of the initial inputs, whereas shrinkage methods introduce regularization and variable selection by penalizing the usual least square criterion. Both kinds of methods are presented and illustrated thanks to the R software on an astronomical dataset.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Date de dépôt :
2020-06-08T14:10:19Z