Electrochemical, surface and computational ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Electrochemical, surface and computational studies on the inhibition performance of some newly synthesized 8-hydroxyquinoline derivatives containing benzimidazole moiety against the corrosion of carbon steel in phosphoric acid environment
Author(s) :
El Faydy, Mohamed [Auteur]
Lakhrissi, Brahim [Auteur]
Jama, charafeddine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Zarrouk, Abdelkader [Auteur]
Olasunkanmi, Lukman O. [Auteur]
Ebenso, Eno E. [Auteur]
Bentiss, Fouad [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Lakhrissi, Brahim [Auteur]
Jama, charafeddine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Zarrouk, Abdelkader [Auteur]
Olasunkanmi, Lukman O. [Auteur]
Ebenso, Eno E. [Auteur]
Bentiss, Fouad [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Journal title :
Journal of Materials Research and Technology
Abbreviated title :
Journal of Materials Research and Technology
Volume number :
9
Pages :
727-748
Publisher :
Elsevier BV
Publication date :
2020-01
ISSN :
2238-7854
HAL domain(s) :
Chimie/Polymères
Chimie/Matériaux
Chimie/Matériaux
English abstract : [en]
Four new 8-hydroxyquinoline derivatives, namely 5-((1H-benzimidazol-2-yl)methyl)quinolin-8-ol (BIMQ), 5-((5-methyl-1H-benzimidazol-2-yl)methyl)quinolin-8-ol (MBMQ), 5-((5-chloro-1H-benzimidazol-2-yl)methyl)quinolin-8-ol ...
Show more >Four new 8-hydroxyquinoline derivatives, namely 5-((1H-benzimidazol-2-yl)methyl)quinolin-8-ol (BIMQ), 5-((5-methyl-1H-benzimidazol-2-yl)methyl)quinolin-8-ol (MBMQ), 5-((5-chloro-1H-benzimidazol-2-yl)methyl)quinolin-8-ol (CBMQ) and 5-((5,6-dichloro-1H-benzimidazol-2-yl)methyl)quinolin-8-ol (DCBMQ) were prepared in moderate to good yields through the condensation of 5-(carboxymethyl)-8-hydroxyquinoline and substituted o-phenylenediamine. 1H, 13C NMR and elemental analysis confirm the formation of the desired compounds. The anti-corrosive potential of these heterocyclic compounds has been studied on carbon steel in 2 M phosphoric acid (H3PO4) electrolyte by means of electrochemical measurements. The inhibition efficiency of these heterocyclic compounds was strongly linked to the concentration and the structure of the molecules; reached a maximum of 94.7% for DCBMQ at 10−3 M. Data generated from potentiodynamic revealed that the investigated 8-hydroxyquinoline derivatives are mixed type inhibitors. The influence of temperature on the corrosion behaviour was assessed. The four quinoline derivatives adsorbed according to the Langmuir's adsorption isotherm. Surface analysis (SEM and XPS) confirmed the formation of a protective layer adsorbed on the steel surface. DFT calculations suggested that 8-hydroxyquinoline derivatives adsorb on the metal via the 8-hydroxyquinoline ring and their corrosion inhibition potential have some linear correlation with the degree of co-planarity of the benzimidazole and hydroxyquinoline rings. Monte Carlo simulations showed that the molecules adsorbed on Fe(1 1 0) surface through the 8-hydroxyquinoline in a near-flat mode and the adsorption energies both in the absence and presence of aqueous phosphate ions agree with the observed trends of inhibition efficiencies.Show less >
Show more >Four new 8-hydroxyquinoline derivatives, namely 5-((1H-benzimidazol-2-yl)methyl)quinolin-8-ol (BIMQ), 5-((5-methyl-1H-benzimidazol-2-yl)methyl)quinolin-8-ol (MBMQ), 5-((5-chloro-1H-benzimidazol-2-yl)methyl)quinolin-8-ol (CBMQ) and 5-((5,6-dichloro-1H-benzimidazol-2-yl)methyl)quinolin-8-ol (DCBMQ) were prepared in moderate to good yields through the condensation of 5-(carboxymethyl)-8-hydroxyquinoline and substituted o-phenylenediamine. 1H, 13C NMR and elemental analysis confirm the formation of the desired compounds. The anti-corrosive potential of these heterocyclic compounds has been studied on carbon steel in 2 M phosphoric acid (H3PO4) electrolyte by means of electrochemical measurements. The inhibition efficiency of these heterocyclic compounds was strongly linked to the concentration and the structure of the molecules; reached a maximum of 94.7% for DCBMQ at 10−3 M. Data generated from potentiodynamic revealed that the investigated 8-hydroxyquinoline derivatives are mixed type inhibitors. The influence of temperature on the corrosion behaviour was assessed. The four quinoline derivatives adsorbed according to the Langmuir's adsorption isotherm. Surface analysis (SEM and XPS) confirmed the formation of a protective layer adsorbed on the steel surface. DFT calculations suggested that 8-hydroxyquinoline derivatives adsorb on the metal via the 8-hydroxyquinoline ring and their corrosion inhibition potential have some linear correlation with the degree of co-planarity of the benzimidazole and hydroxyquinoline rings. Monte Carlo simulations showed that the molecules adsorbed on Fe(1 1 0) surface through the 8-hydroxyquinoline in a near-flat mode and the adsorption energies both in the absence and presence of aqueous phosphate ions agree with the observed trends of inhibition efficiencies.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Research team(s) :
Ingénierie des Systèmes Polymères
Submission date :
2020-07-09T16:49:43Z
2020-08-27T12:47:50Z
2020-08-27T12:47:50Z
Files
- 1-s2.0-S2238785419309202-main.pdf
- Version éditeur
- Open access
- Access the document
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States