Deformation across the mantle transition ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Deformation across the mantle transition zone: A theoretical mineral physics view
Auteur(s) :
Ritterbex, Sebastian [Auteur]
Ehime University [Matsuyama, Japon]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Carrez, Philippe [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Cordier, Patrick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Ehime University [Matsuyama, Japon]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Carrez, Philippe [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Cordier, Patrick [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Titre de la revue :
Earth and Planetary Science Letters
Nom court de la revue :
Earth Planet. Sci. Lett.
Numéro :
547
Pagination :
116438
Éditeur :
Elsevier BV
Date de publication :
2020-10-01
Statut de l’article :
Publié
ISSN :
0012-821X
Mot(s)-clé(s) en anglais :
deformation
modeling
transition zone
pure climb creep
wadsleyite
ringwoodite
majorite
modeling
transition zone
pure climb creep
wadsleyite
ringwoodite
majorite
Discipline(s) HAL :
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Résumé en anglais : [en]
The dynamics of the Earth’s mantle is still poorly constrained due to the lack of understanding the transfer of matter between the upper and the lower mantle and their convective vigor. The transition zone (TZ) might play ...
Lire la suite >The dynamics of the Earth’s mantle is still poorly constrained due to the lack of understanding the transfer of matter between the upper and the lower mantle and their convective vigor. The transition zone (TZ) might play a crucial role as the interface connecting the upper to the lower mantle. Here, we examine the rheology of the main TZ minerals, wadsleyite, ringwoodite and majorite garnet based on a mineral physics approach. Using the results of lattice friction modeling and dislocation glide mobilities together with the available data on self-diffusion in the TZ minerals, we quantify their plastic deformation by diffusion and dislocation creep from theoretical plasticity models. We show that pure climb creep is expected to contribute to the plasticity of the TZ without the need of significant diffusion-related hydrolytic weakening, matching well the geophysical observations. Our model results predict that crystallographic preferred orientations (CPO) might only develop along with stress concentrations as present around cold subducting slabs which can be locally weaker than the surrounding TZ despite their lower temperatures.Lire moins >
Lire la suite >The dynamics of the Earth’s mantle is still poorly constrained due to the lack of understanding the transfer of matter between the upper and the lower mantle and their convective vigor. The transition zone (TZ) might play a crucial role as the interface connecting the upper to the lower mantle. Here, we examine the rheology of the main TZ minerals, wadsleyite, ringwoodite and majorite garnet based on a mineral physics approach. Using the results of lattice friction modeling and dislocation glide mobilities together with the available data on self-diffusion in the TZ minerals, we quantify their plastic deformation by diffusion and dislocation creep from theoretical plasticity models. We show that pure climb creep is expected to contribute to the plasticity of the TZ without the need of significant diffusion-related hydrolytic weakening, matching well the geophysical observations. Our model results predict that crystallographic preferred orientations (CPO) might only develop along with stress concentrations as present around cold subducting slabs which can be locally weaker than the surrounding TZ despite their lower temperatures.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet Européen :
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Plasticité
Date de dépôt :
2020-07-13T11:36:51Z
2020-08-28T13:32:31Z
2020-08-28T13:32:31Z
Fichiers
- Ritterbex-et-al(2020)RheologyTransitionZoneClimb.pdf
- Version éditeur
- Accès libre
- Accéder au document