Time-Dependent Automatic Parameter ...
Type de document :
Communication dans un congrès avec actes
DOI :
Titre :
Time-Dependent Automatic Parameter Configuration of a Local Search Algorithm
Auteur(s) :
Sae-Dan, Weerapan [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Kessaci, Marie-Eleonore [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Veerapen, Nadarajen [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Jourdan, Laetitia [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Operational Research, Knowledge And Data [ORKAD]
Kessaci, Marie-Eleonore [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Veerapen, Nadarajen [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Jourdan, Laetitia [Auteur]
Operational Research, Knowledge And Data [ORKAD]
Titre de la manifestation scientifique :
GECCO '20 Companion: Companion Conference on Genetic and Evolutionary Computation
Organisateur(s) de la manifestation scientifique :
ACM
Ville :
Cancún
Pays :
Mexique
Date de début de la manifestation scientifique :
2020-07-08
Titre de la revue :
GECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
Date de publication :
2020-07-09
Mot(s)-clé(s) en anglais :
Combinatorial Optimization
Local Search
Automatic Algorithm Configuration
Local Search
Automatic Algorithm Configuration
Discipline(s) HAL :
Informatique [cs]/Intelligence artificielle [cs.AI]
Computer Science [cs]/Operations Research [math.OC]
Computer Science [cs]/Operations Research [math.OC]
Résumé en anglais : [en]
In combinatorial optimization, where problems are often NP-hard, metaheuristics and other approximation algorithms frequently have many parameters in order to adapt to a wide range of scenarios. Very often, obtaining good ...
Lire la suite >In combinatorial optimization, where problems are often NP-hard, metaheuristics and other approximation algorithms frequently have many parameters in order to adapt to a wide range of scenarios. Very often, obtaining good values for these parameters is a long and tedious manual task but automatic algorithm configuration has been shown to overcome this issue. At the same time, it may also be useful for parameter values to change during the search in order to fine-tune the search process. These parameters include low-level heuristic components. In this article, we propose to use automatic parameter configuration coupled with a control mechanism that switches between parameter configurations at specific times during the search, as an in-between classic parameter tuning and selection hyperheuristics. We test this idea on a local search algorithm, whose parameters allow for selecting different design components, and three combinatorial problems: the Permutation Flowshop Problem, the Traveling Salesman Problem, and the Quadratic Assignment Problem. In comparisons with traditional static automatic parameter configuration, the proposed approach time-dependent is shown to perform better. Additionally, better-performing local search component configurations are identified and discussed.Lire moins >
Lire la suite >In combinatorial optimization, where problems are often NP-hard, metaheuristics and other approximation algorithms frequently have many parameters in order to adapt to a wide range of scenarios. Very often, obtaining good values for these parameters is a long and tedious manual task but automatic algorithm configuration has been shown to overcome this issue. At the same time, it may also be useful for parameter values to change during the search in order to fine-tune the search process. These parameters include low-level heuristic components. In this article, we propose to use automatic parameter configuration coupled with a control mechanism that switches between parameter configurations at specific times during the search, as an in-between classic parameter tuning and selection hyperheuristics. We test this idea on a local search algorithm, whose parameters allow for selecting different design components, and three combinatorial problems: the Permutation Flowshop Problem, the Traveling Salesman Problem, and the Quadratic Assignment Problem. In comparisons with traditional static automatic parameter configuration, the proposed approach time-dependent is shown to perform better. Additionally, better-performing local search component configurations are identified and discussed.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02895548/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02895548/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02895548/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- GECCO2020-ECADA-final.pdf
- Accès libre
- Accéder au document