Substitution degree and fatty chain length ...
Document type :
Article dans une revue scientifique
Permalink :
Title :
Substitution degree and fatty chain length influence on structure and properties of fatty acid cellulose esters
Author(s) :
Duchatel-Crépy, Lucie [Auteur]
Joly, Nicolas [Auteur]
Martin, Patrick [Auteur]
Marin, Adeline [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Tahon, Jean-Francois [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Lefebvre, Jean-Marc [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Gaucher, Valerie [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Joly, Nicolas [Auteur]
Martin, Patrick [Auteur]
Marin, Adeline [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Tahon, Jean-Francois [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Lefebvre, Jean-Marc [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Gaucher, Valerie [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Journal title :
Carbohydrate Polymers
Abbreviated title :
Carbohydrate Polymers
Volume number :
234
Pages :
115912
Publisher :
Elsevier BV
Publication date :
2020-04-15
ISSN :
0144-8617
HAL domain(s) :
Chimie/Matériaux
Chimie/Polymères
Chimie/Polymères
English abstract : [en]
A series of fatty acid cellulose esters (FACEs) with both various degrees of substitution (from DS = 1.7 to 3) and side chain length were obtained by grafting aliphatic acid chlorides (from C10 to C16) onto cellulose ...
Show more >A series of fatty acid cellulose esters (FACEs) with both various degrees of substitution (from DS = 1.7 to 3) and side chain length were obtained by grafting aliphatic acid chlorides (from C10 to C16) onto cellulose backbone, in a homogeneous LiCl/DMAc medium. These materials were characterized by Fourier Transformed InfraRed (FTIR) and Nuclear Magnetic Resonance of Proton (1H NMR) spectroscopies, as well as Wide Angle X-ray Scattering (WAXS), Differential Scanning Calorimetry (DSC), mechanical analyses and chemical resistance to concentrated acid and alkali solutions. Whatever the alkyl chains length and the DS, all samples displayed a layered structure composed of a planar arrangement of parallel cellulosic backbones with fully extended flexible side chains oriented perpendicular to the planar structure without interdigitation. The alkyl chains were able to crystallize as soon as they are long enough. As the DS decreased, the plasticizing effect of the alkyl chains was less pronounced and their ability to crystallize was improved. Regarding the mechanical behavior and the chemical resistance, similar results were observed whatever the DS is.Show less >
Show more >A series of fatty acid cellulose esters (FACEs) with both various degrees of substitution (from DS = 1.7 to 3) and side chain length were obtained by grafting aliphatic acid chlorides (from C10 to C16) onto cellulose backbone, in a homogeneous LiCl/DMAc medium. These materials were characterized by Fourier Transformed InfraRed (FTIR) and Nuclear Magnetic Resonance of Proton (1H NMR) spectroscopies, as well as Wide Angle X-ray Scattering (WAXS), Differential Scanning Calorimetry (DSC), mechanical analyses and chemical resistance to concentrated acid and alkali solutions. Whatever the alkyl chains length and the DS, all samples displayed a layered structure composed of a planar arrangement of parallel cellulosic backbones with fully extended flexible side chains oriented perpendicular to the planar structure without interdigitation. The alkyl chains were able to crystallize as soon as they are long enough. As the DS decreased, the plasticizing effect of the alkyl chains was less pronounced and their ability to crystallize was improved. Regarding the mechanical behavior and the chemical resistance, similar results were observed whatever the DS is.Show less >
Language :
Anglais
Audience :
Internationale
Administrative institution(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Research team(s) :
Ingénierie des Systèmes Polymères
Submission date :
2020-11-05T16:24:30Z
2020-11-07T21:10:23Z
2020-11-16T09:52:14Z
2020-11-07T21:10:23Z
2020-11-16T09:52:14Z