Benefit of Rare-Earth “Smart Doping” and ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Benefit of Rare-Earth “Smart Doping” and Material Nanostructuring for the Next Generation of Er-Doped Fibers
Author(s) :
Savelii, Inna [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Bigot, Laurent [Auteur correspondant]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Capoen, Bruno [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Gonnet, Cedric [Auteur]
Prysmian S.p.A.
Chanéac, Corinne [Auteur]
Matériaux Hybrides et Nanomatériaux [MHN]
Burova, Ekaterina [Auteur]
Saint-Gobain Recherche [SGR]
Pastouret, Alain [Auteur]
Prysmian S.p.A.
El Hamzaoui, Hicham [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Bouazaoui, Mohamed [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Bigot, Laurent [Auteur correspondant]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Capoen, Bruno [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Gonnet, Cedric [Auteur]
Prysmian S.p.A.
Chanéac, Corinne [Auteur]
Matériaux Hybrides et Nanomatériaux [MHN]
Burova, Ekaterina [Auteur]
Saint-Gobain Recherche [SGR]
Pastouret, Alain [Auteur]
Prysmian S.p.A.
El Hamzaoui, Hicham [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Bouazaoui, Mohamed [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Journal title :
Nanoscale Research Letters
Pages :
206
Publisher :
SpringerOpen
Publication date :
2017-03-21
ISSN :
1931-7573
English keyword(s) :
Erbium-doped optical fiber amplifier
Oxide nanoparticles
Photoluminescence
Material nanostructuring
Oxide nanoparticles
Photoluminescence
Material nanostructuring
HAL domain(s) :
Physique [physics]
English abstract : [en]
Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er 3+-doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a ...
Show more >Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er 3+-doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er 3+ ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances. On the other hand, so as to avoid such quenching effect, glass modifiers like Al 3+ or P 5+ ions are used in the fabrication of commercial EDFs but are not suitable for applications in harsh environment because these glass modifiers are precursors of radiation-induced structural defects and consequently of optical losses. In this work, we investigate the concept of smart doping via material nanostructuring as a way to fabricate more efficient optical devices. This approach aims at optimizing the glass composition of the fiber core in order to use the minimal content of glass modifiers needed to reach the suited level of performances for EDFA. Er 3+-doped alumina nanoparticles (NPs), as precursor of Er 3+ ions in the preform fabrication process, were used to control the environment of rare-earth ions and their optical properties. Structural and optical characterizations of NP-doped preforms and optical fibers drawn from such preforms demonstrate the interest of this approach for small concentrations of aluminum in comparison to similar glass compositions obtained by a conventional technique.Show less >
Show more >Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er 3+-doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er 3+ ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances. On the other hand, so as to avoid such quenching effect, glass modifiers like Al 3+ or P 5+ ions are used in the fabrication of commercial EDFs but are not suitable for applications in harsh environment because these glass modifiers are precursors of radiation-induced structural defects and consequently of optical losses. In this work, we investigate the concept of smart doping via material nanostructuring as a way to fabricate more efficient optical devices. This approach aims at optimizing the glass composition of the fiber core in order to use the minimal content of glass modifiers needed to reach the suited level of performances for EDFA. Er 3+-doped alumina nanoparticles (NPs), as precursor of Er 3+ ions in the preform fabrication process, were used to control the environment of rare-earth ions and their optical properties. Structural and optical characterizations of NP-doped preforms and optical fibers drawn from such preforms demonstrate the interest of this approach for small concentrations of aluminum in comparison to similar glass compositions obtained by a conventional technique.Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-01493855/document
- Open access
- Access the document
- https://nanoscalereslett.springeropen.com/track/pdf/10.1186/s11671-017-1947-6
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01493855/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01493855/document
- Open access
- Access the document
- document
- Open access
- Access the document
- art_10.1186_s11671-017-1947-6.pdf
- Open access
- Access the document