Comment on “Gain-assisted superluminal ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Comment on “Gain-assisted superluminal light propagation through a Bose-Einstein condensate cavity system”
Author(s) :
Macke, Bruno [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Segard, Bernard [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]

Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Segard, Bernard [Auteur]

Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Journal title :
The European Physical Journal D : Atomic, molecular, optical and plasma physics
Pages :
193
Publisher :
EDP Sciences
Publication date :
2016-09-22
ISSN :
1434-6060
English keyword(s) :
Fast light
slow light
Kramers-Kronig relations
slow light
Kramers-Kronig relations
HAL domain(s) :
Physique [physics]/Physique [physics]/Optique [physics.optics]
English abstract : [en]
In a recent theoretical article [Eur. Phys. J. D 70, 1 (2016)], Kazemi et al. claim to have demonstrated superluminal light transmission in an optomechanical system where a Bose-Einstein condensate serves as the mechanical ...
Show more >In a recent theoretical article [Eur. Phys. J. D 70, 1 (2016)], Kazemi et al. claim to have demonstrated superluminal light transmission in an optomechanical system where a Bose-Einstein condensate serves as the mechanical oscillator. In fact the superluminal propagation is only inferred from the existence of a minimum of transmission of the system at the probe frequency. This condition is not sufficient and we show that, in all the cases where superluminal propagation is claimed by Kazemi et al., the propagation is in reality subluminal. Moreover, we point out that the system under consideration is not minimum-phase-shift. The Kramers-Kronig relations then only fix a lower limit to the group delay and we show that these two quantities have sometimes opposite signs.Show less >
Show more >In a recent theoretical article [Eur. Phys. J. D 70, 1 (2016)], Kazemi et al. claim to have demonstrated superluminal light transmission in an optomechanical system where a Bose-Einstein condensate serves as the mechanical oscillator. In fact the superluminal propagation is only inferred from the existence of a minimum of transmission of the system at the probe frequency. This condition is not sufficient and we show that, in all the cases where superluminal propagation is claimed by Kazemi et al., the propagation is in reality subluminal. Moreover, we point out that the system under consideration is not minimum-phase-shift. The Kramers-Kronig relations then only fix a lower limit to the group delay and we show that these two quantities have sometimes opposite signs.Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-01292239v2/document
- Open access
- Access the document
- http://arxiv.org/pdf/1603.07208
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01292239v2/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01292239v2/document
- Open access
- Access the document
- document
- Open access
- Access the document
- CommentMahmoudi-2.pdf
- Open access
- Access the document
- 1603.07208
- Open access
- Access the document