Numerical optimization of cell colonization ...
Document type :
Article dans une revue scientifique: Article original
PMID :
Permalink :
Title :
Numerical optimization of cell colonization modelling inside scaffold for perfusion bioreactor: a multiscale model
Author(s) :
Nguyen, Trong Khoa [Auteur]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 UPJV [LRCS]
Carpentier, Olivier [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Monchau, Francine [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Hildebrand, Feng [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Hornez, Jean-Christophe [Auteur]
Laboratoire des Matériaux Céramiques et Procédés Associés - EA 2443 [LMCPA]
Hivart, Philippe [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 UPJV [LRCS]
Carpentier, Olivier [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Monchau, Francine [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Hildebrand, Feng [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Hornez, Jean-Christophe [Auteur]
Laboratoire des Matériaux Céramiques et Procédés Associés - EA 2443 [LMCPA]
Hivart, Philippe [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Journal title :
Medical Engineering & Physics
Abbreviated title :
Med Eng Phys
Volume number :
57
Pages :
40-50
Publication date :
2018-05-10
ISSN :
1873-4030
Keyword(s) :
CFD multiscale model
Perfusion bioreactor
3D cell colonization modelling
Wall shear stress
Perfusion bioreactor
3D cell colonization modelling
Wall shear stress
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
Part of clinically applicable bone graft substitutes are developed by using mechanical stimulation of flow-perfusion into cell-seeded scaffolds. The role of fluid flow is crucial in driving the nutrient to seeded cells and ...
Show more >Part of clinically applicable bone graft substitutes are developed by using mechanical stimulation of flow-perfusion into cell-seeded scaffolds. The role of fluid flow is crucial in driving the nutrient to seeded cells and in stimulating cell colonization. A common numerical approach is to use a multiscale model to link some physical quantities (wall shear stress and inlet flow rate) that act at different scales. In this study, a multiscale model is developed in order to determine the optimal inlet flow rate to cultivate osteoblast-like cells seeded in a controlled macroporous biomaterial inside a perfusion bioreactor system. We focus particularly on the influence of Wall Shear Stress on cell colonization to predict cell colonization at the macroscale. Results obtained at the microscale are interpolated at the macroscale to determine the optimal flow rate. For a macroporous scaffold made of interconnected pores with pore diameters of above 350 μm and interconnection diameters of 150 μm, the model predicts a cell colonization of 325% after a 7-day-cell culture with a constant inlet flow rate of 0.69 mL·min-1Show less >
Show more >Part of clinically applicable bone graft substitutes are developed by using mechanical stimulation of flow-perfusion into cell-seeded scaffolds. The role of fluid flow is crucial in driving the nutrient to seeded cells and in stimulating cell colonization. A common numerical approach is to use a multiscale model to link some physical quantities (wall shear stress and inlet flow rate) that act at different scales. In this study, a multiscale model is developed in order to determine the optimal inlet flow rate to cultivate osteoblast-like cells seeded in a controlled macroporous biomaterial inside a perfusion bioreactor system. We focus particularly on the influence of Wall Shear Stress on cell colonization to predict cell colonization at the macroscale. Results obtained at the microscale are interpolated at the macroscale to determine the optimal flow rate. For a macroporous scaffold made of interconnected pores with pore diameters of above 350 μm and interconnection diameters of 150 μm, the model predicts a cell colonization of 325% after a 7-day-cell culture with a constant inlet flow rate of 0.69 mL·min-1Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Collections :
Submission date :
2021-01-20T15:59:07Z
2024-02-23T14:08:02Z
2024-02-23T14:08:02Z
Files
- document
- Open access
- Access the document