Numerical optimization of cell colonization ...
Type de document :
Article dans une revue scientifique: Article original
PMID :
URL permanente :
Titre :
Numerical optimization of cell colonization modelling inside scaffold for perfusion bioreactor: a multiscale model
Auteur(s) :
Nguyen, Trong Khoa [Auteur]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 UPJV [LRCS]
Carpentier, Olivier [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Monchau, Francine [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Hildebrand, Feng [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Hornez, Jean-Christophe [Auteur]
Laboratoire des Matériaux Céramiques et Procédés Associés - EA 2443 [LMCPA]
Hivart, Philippe [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 UPJV [LRCS]
Carpentier, Olivier [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Monchau, Francine [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Hildebrand, Feng [Auteur]
Advanced Drug Delivery Systems (ADDS) - U1008
Hornez, Jean-Christophe [Auteur]
Laboratoire des Matériaux Céramiques et Procédés Associés - EA 2443 [LMCPA]
Hivart, Philippe [Auteur]
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Titre de la revue :
Medical Engineering & Physics
Nom court de la revue :
Med Eng Phys
Numéro :
57
Pagination :
40-50
Date de publication :
2018-05-10
ISSN :
1873-4030
Mot(s)-clé(s) :
CFD multiscale model
Perfusion bioreactor
3D cell colonization modelling
Wall shear stress
Perfusion bioreactor
3D cell colonization modelling
Wall shear stress
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
Part of clinically applicable bone graft substitutes are developed by using mechanical stimulation of flow-perfusion into cell-seeded scaffolds. The role of fluid flow is crucial in driving the nutrient to seeded cells and ...
Lire la suite >Part of clinically applicable bone graft substitutes are developed by using mechanical stimulation of flow-perfusion into cell-seeded scaffolds. The role of fluid flow is crucial in driving the nutrient to seeded cells and in stimulating cell colonization. A common numerical approach is to use a multiscale model to link some physical quantities (wall shear stress and inlet flow rate) that act at different scales. In this study, a multiscale model is developed in order to determine the optimal inlet flow rate to cultivate osteoblast-like cells seeded in a controlled macroporous biomaterial inside a perfusion bioreactor system. We focus particularly on the influence of Wall Shear Stress on cell colonization to predict cell colonization at the macroscale. Results obtained at the microscale are interpolated at the macroscale to determine the optimal flow rate. For a macroporous scaffold made of interconnected pores with pore diameters of above 350 μm and interconnection diameters of 150 μm, the model predicts a cell colonization of 325% after a 7-day-cell culture with a constant inlet flow rate of 0.69 mL·min-1Lire moins >
Lire la suite >Part of clinically applicable bone graft substitutes are developed by using mechanical stimulation of flow-perfusion into cell-seeded scaffolds. The role of fluid flow is crucial in driving the nutrient to seeded cells and in stimulating cell colonization. A common numerical approach is to use a multiscale model to link some physical quantities (wall shear stress and inlet flow rate) that act at different scales. In this study, a multiscale model is developed in order to determine the optimal inlet flow rate to cultivate osteoblast-like cells seeded in a controlled macroporous biomaterial inside a perfusion bioreactor system. We focus particularly on the influence of Wall Shear Stress on cell colonization to predict cell colonization at the macroscale. Results obtained at the microscale are interpolated at the macroscale to determine the optimal flow rate. For a macroporous scaffold made of interconnected pores with pore diameters of above 350 μm and interconnection diameters of 150 μm, the model predicts a cell colonization of 325% after a 7-day-cell culture with a constant inlet flow rate of 0.69 mL·min-1Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Collections :
Date de dépôt :
2021-01-20T15:59:07Z
2024-02-23T14:08:02Z
2024-02-23T14:08:02Z
Fichiers
- document
- Accès libre
- Accéder au document