Pro-Oxidant/Antioxidant Balance during a ...
Document type :
Article dans une revue scientifique: Article original
DOI :
PMID :
Permalink :
Title :
Pro-Oxidant/Antioxidant Balance during a Prolonged Exposure to Moderate Altitude in Athletes Exhibiting Exercise-Induced Hypoxemia at Sea-Level.
Author(s) :
Raberin, Antoine [Auteur]
Laboratoire Européen Performance Santé Altitude [LEPSA]
Nader, Elie [Auteur]
Laboratoire Interuniversitaire de Biologie de la Motricité [LIBM]
Lopez Ayerbe, Jorge [Auteur]
Alfonsi, Gauthier [Auteur]
Laboratoire Interuniversitaire de Biologie de la Motricité [LIBM]
Mucci, Patrick [Auteur]
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Rytz, Chantal L [Auteur]
University of Calgary
Pialoux, Vincent [Auteur]
Institut universitaire de France [IUF]
Durand, Fabienne [Auteur]
Laboratoire Européen Performance Santé Altitude [LEPSA]
Laboratoire Européen Performance Santé Altitude [LEPSA]
Nader, Elie [Auteur]
Laboratoire Interuniversitaire de Biologie de la Motricité [LIBM]
Lopez Ayerbe, Jorge [Auteur]
Alfonsi, Gauthier [Auteur]
Laboratoire Interuniversitaire de Biologie de la Motricité [LIBM]
Mucci, Patrick [Auteur]

Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369
Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Rytz, Chantal L [Auteur]
University of Calgary
Pialoux, Vincent [Auteur]
Institut universitaire de France [IUF]
Durand, Fabienne [Auteur]
Laboratoire Européen Performance Santé Altitude [LEPSA]
Journal title :
Life (Basel, Switzerland)
Abbreviated title :
Life (Basel)
Volume number :
11
Publication date :
2021-03-11
ISSN :
2075-1729
English keyword(s) :
acclimatization
aerobic performance
arterial desaturation
hypoxia
oxidative stress
reactive oxygen species
aerobic performance
arterial desaturation
hypoxia
oxidative stress
reactive oxygen species
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
This study examined to what extent athletes exhibiting exercise-induced hypoxemia (EIH) possess an altered redox status at rest, in response to exercise at sea level (SL) and during moderate altitude exposure. EIH was ...
Show more >This study examined to what extent athletes exhibiting exercise-induced hypoxemia (EIH) possess an altered redox status at rest, in response to exercise at sea level (SL) and during moderate altitude exposure. EIH was defined as a fall in arterial O saturation of at least 4% during exercise. Nine endurance athletes with EIH and ten without (NEIH) performed a maximal incremental test under three conditions: SL, one (H1) and five (H2) days after arrival to 2400 m. Gas exchange and peripheral capillary oxygen saturation (SpO) were continuously monitored. Blood was sampled before exercise and after exercise cessation. Advanced oxidation protein products (AOPP), catalase, ferric-reducing antioxidant power, glutathione peroxidase, superoxide dismutase (SOD) and nitric oxide metabolites (NOx) were measured in plasma by spectrophotometry. EIH athletes had higher AOPP and NOx concentrations at pre- and post-exercise stages compared to NEIH at SL, H2 but not at H1. Only the EIH group experienced increased SOD activity between pre- and post-exercise exercise at SL and H2 but not at H1. EIH athletes had exacerbated oxidative stress compared to the NEIH athletes at SL and H2. These differences were blunted at H1. Oxidative stress did not alter the EIH groups' aerobic performance and could lead to higher minute ventilation at H2. These results suggest that higher oxidative stress response EIH athletes could be involved in improved aerobic muscle functionality and a greater ventilatory acclimatization during prolonged hypoxia.Show less >
Show more >This study examined to what extent athletes exhibiting exercise-induced hypoxemia (EIH) possess an altered redox status at rest, in response to exercise at sea level (SL) and during moderate altitude exposure. EIH was defined as a fall in arterial O saturation of at least 4% during exercise. Nine endurance athletes with EIH and ten without (NEIH) performed a maximal incremental test under three conditions: SL, one (H1) and five (H2) days after arrival to 2400 m. Gas exchange and peripheral capillary oxygen saturation (SpO) were continuously monitored. Blood was sampled before exercise and after exercise cessation. Advanced oxidation protein products (AOPP), catalase, ferric-reducing antioxidant power, glutathione peroxidase, superoxide dismutase (SOD) and nitric oxide metabolites (NOx) were measured in plasma by spectrophotometry. EIH athletes had higher AOPP and NOx concentrations at pre- and post-exercise stages compared to NEIH at SL, H2 but not at H1. Only the EIH group experienced increased SOD activity between pre- and post-exercise exercise at SL and H2 but not at H1. EIH athletes had exacerbated oxidative stress compared to the NEIH athletes at SL and H2. These differences were blunted at H1. Oxidative stress did not alter the EIH groups' aerobic performance and could lead to higher minute ventilation at H2. These results suggest that higher oxidative stress response EIH athletes could be involved in improved aerobic muscle functionality and a greater ventilatory acclimatization during prolonged hypoxia.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Non spécifiée
Administrative institution(s) :
Université de Lille
Univ. Artois
Univ. Littoral Côte d’Opale
Univ. Artois
Univ. Littoral Côte d’Opale
Research team(s) :
Activité Physique, Muscle, Santé (APMS)
Submission date :
2021-04-11T05:22:41Z
2021-04-12T08:56:29Z
2021-04-12T08:56:29Z
Files
- Raberin - Life- 2021.pdf
- Version éditeur
- Open access
- Access the document