Self-stratified bio-based coatings: ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Self-stratified bio-based coatings: Formulation and elucidation of critical parameters governing stratification
Author(s) :
Lemesle, Charlotte [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bellayer, Séverine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Duquesne, Sophie [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Schuller, Anne-Sophie [Auteur]
Laboratoire de Photochimie et d'Ingénierie Macromoléculaires [LPIM]
Thomas, Laurent [Auteur]
Casetta, Mathilde [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bellayer, Séverine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Duquesne, Sophie [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Schuller, Anne-Sophie [Auteur]
Laboratoire de Photochimie et d'Ingénierie Macromoléculaires [LPIM]
Thomas, Laurent [Auteur]
Casetta, Mathilde [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations (UMET) - UMR 8207
Journal title :
Applied Surface Science
Volume number :
536
Pages :
147687
Publisher :
Elsevier BV
Publication date :
2021-01-15
ISSN :
0169-4332
English keyword(s) :
Self-stratifying coating
Bio-based epoxy resin
Silicone resin
Surface energy
Solvent volatility
Cross-linking reaction
Bio-based epoxy resin
Silicone resin
Surface energy
Solvent volatility
Cross-linking reaction
HAL domain(s) :
Chimie/Matériaux
Chimie/Polymères
Chimie/Polymères
English abstract : [en]
Self-stratification is an innovative one-step process used to design multi-functional coatings gathering simultaneously in a one-pot formulation the primer, the intermediate layer and the top coat properties. Many ...
Show more >Self-stratification is an innovative one-step process used to design multi-functional coatings gathering simultaneously in a one-pot formulation the primer, the intermediate layer and the top coat properties. Many selfstratifying coatings contain oil-based epoxy resins but the literature is scarce in the development of “greener” solutions. In this work, silicone resins and bio-based epoxy resins were dissolved in various solvent blends, applied on a composite substrate and cured under different conditions to obtain stratified coatings. To reach a perfect stratification, the influence of various parameters including (i) the surface tension and the polarity of the resins, (ii) the solvents volatility, (iii) the curing temperature and (iv) the reactivity of the epoxy/amine reaction was studied by a systematic approach. In accordance with the literature, it was demonstrated that a large difference in surface energy and polarity favors resins separation. The volatility of the solvent blend was also shown to be a key factor in the stratification process. However, the predominant parameter, rarely taken into account, is the curing temperature, which impacts the cross-linking reaction of the epoxy resin. The increase in molecular weight (MW) of epoxy resins due to the cross-linking reaction favors the incompatibility between resins by increasing the difference in MW between epoxy and silicone resins. Thus, optimization of process conditions allowed the design of perfectly stratified bio-based epoxy/silicone coatings. The mechanism of film stratification was also elucidated thanks to in-situ analyses.Show less >
Show more >Self-stratification is an innovative one-step process used to design multi-functional coatings gathering simultaneously in a one-pot formulation the primer, the intermediate layer and the top coat properties. Many selfstratifying coatings contain oil-based epoxy resins but the literature is scarce in the development of “greener” solutions. In this work, silicone resins and bio-based epoxy resins were dissolved in various solvent blends, applied on a composite substrate and cured under different conditions to obtain stratified coatings. To reach a perfect stratification, the influence of various parameters including (i) the surface tension and the polarity of the resins, (ii) the solvents volatility, (iii) the curing temperature and (iv) the reactivity of the epoxy/amine reaction was studied by a systematic approach. In accordance with the literature, it was demonstrated that a large difference in surface energy and polarity favors resins separation. The volatility of the solvent blend was also shown to be a key factor in the stratification process. However, the predominant parameter, rarely taken into account, is the curing temperature, which impacts the cross-linking reaction of the epoxy resin. The increase in molecular weight (MW) of epoxy resins due to the cross-linking reaction favors the incompatibility between resins by increasing the difference in MW between epoxy and silicone resins. Thus, optimization of process conditions allowed the design of perfectly stratified bio-based epoxy/silicone coatings. The mechanism of film stratification was also elucidated thanks to in-situ analyses.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Administrative institution(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Research team(s) :
Ingénierie des Systèmes Polymères
Submission date :
2021-04-27T11:43:22Z
2021-05-06T15:27:46Z
2021-05-06T15:27:46Z
Files
- lemesle2021.pdf
- Version éditeur
- Confidential access
- Access the document