Radiative Quality Factor in Thin Resonant ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Radiative Quality Factor in Thin Resonant Metamaterial Absorbers
Auteur(s) :
Fernez, Nicolas [Auteur]
Dispostifs Opto et Micro Electronique - IEMN [DOME - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Burgnies, Ludovic [Auteur]
Université du Littoral Côte d'Opale [ULCO]
Dispostifs Opto et Micro Electronique - IEMN [DOME - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
HAO, Jianping [Auteur]
Dispostifs Opto et Micro Electronique - IEMN [DOME - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Mismer, Colin [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Ducournau, Guillaume [Auteur]
Photonique THz - IEMN [PHOTONIQUE THZ - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lippens, Didier [Auteur]
Dispostifs Opto et Micro Electronique - IEMN [DOME - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lheurette, Eric [Auteur]
Dispostifs Opto et Micro Electronique - IEMN [DOME - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Dispostifs Opto et Micro Electronique - IEMN [DOME - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Burgnies, Ludovic [Auteur]

Université du Littoral Côte d'Opale [ULCO]
Dispostifs Opto et Micro Electronique - IEMN [DOME - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
HAO, Jianping [Auteur]
Dispostifs Opto et Micro Electronique - IEMN [DOME - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Mismer, Colin [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Ducournau, Guillaume [Auteur]

Photonique THz - IEMN [PHOTONIQUE THZ - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lippens, Didier [Auteur]

Dispostifs Opto et Micro Electronique - IEMN [DOME - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lheurette, Eric [Auteur]

Dispostifs Opto et Micro Electronique - IEMN [DOME - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la revue :
IEEE Transactions on Microwave Theory and Techniques
Pagination :
1764-1772
Éditeur :
Institute of Electrical and Electronics Engineers
Date de publication :
2018-04
ISSN :
0018-9480
Mot(s)-clé(s) en anglais :
Dielectric resonator
electromagnetic absorber
metamaterials
perfect metamaterial absorbers
electromagnetic absorber
metamaterials
perfect metamaterial absorbers
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Perfect electromagnetic absorption in an array of thin resonators is analyzed by means of the quality factor involving separately the contribution of losses and a coupling with free space. An equivalent electrical circuit ...
Lire la suite >Perfect electromagnetic absorption in an array of thin resonators is analyzed by means of the quality factor involving separately the contribution of losses and a coupling with free space. An equivalent electrical circuit based on an open-resonator model is introduced for an absorber made of dielectric cubes arranged in a square lattice deposited onto a metallic ground plane. From full-wave simulations, two regimes depending on the lattice period are pointed out. A quadratic dependence of the radiative quality factor is shown for largest periods, whereas the radiative Q-factor is governed by a coupling between resonators at small periods. It results that an optimal period for obtaining a unitary absorption can be deduced from a single simulation and that a maximal absorption bandwidth emerges from a tradeoff between these two regimes. Finally, the radiative Q-factor concept is applied to analyze an absorber made of patch resonators with the goal to broaden the absorption bandwidth. Particularly, the performances of a multisized patch absorber are experimentally evaluated in the W-band (75-110 GHz) with a good agreement when compared to simulations. Such an analysis of Q-factor appears as a powerful tool for designing single-sized and multisized resonator absorbers targeting a specific absorption spectrum.Lire moins >
Lire la suite >Perfect electromagnetic absorption in an array of thin resonators is analyzed by means of the quality factor involving separately the contribution of losses and a coupling with free space. An equivalent electrical circuit based on an open-resonator model is introduced for an absorber made of dielectric cubes arranged in a square lattice deposited onto a metallic ground plane. From full-wave simulations, two regimes depending on the lattice period are pointed out. A quadratic dependence of the radiative quality factor is shown for largest periods, whereas the radiative Q-factor is governed by a coupling between resonators at small periods. It results that an optimal period for obtaining a unitary absorption can be deduced from a single simulation and that a maximal absorption bandwidth emerges from a tradeoff between these two regimes. Finally, the radiative Q-factor concept is applied to analyze an absorber made of patch resonators with the goal to broaden the absorption bandwidth. Particularly, the performances of a multisized patch absorber are experimentally evaluated in the W-band (75-110 GHz) with a good agreement when compared to simulations. Such an analysis of Q-factor appears as a powerful tool for designing single-sized and multisized resonator absorbers targeting a specific absorption spectrum.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :