A parametric technique for trap characterization ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
A parametric technique for trap characterization in AlGaN/GaN HEMTs
Auteur(s) :
Duffy, Steven [Auteur]
Liverpool John Morres University - LJMU (UK)
Benbakhti, Brahim [Auteur]
Liverpool John Morres University - LJMU (UK)
Zhang, Wei [Auteur]
Liverpool John Morres University - LJMU (UK)
Ahmeda, Khaled [Auteur]
Cardiff Metropolitan University
Kalna, Karol [Auteur]
Swansea University
Boucherta, Mohammed [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Mattalah, Maghnia [Auteur]
Université Saad Dahleb [Blida, Algeria]
Chahdi, Hassane Ouazzani [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Puissance - IEMN [PUISSANCE - IEMN]
Bourzgui, Nour-Eddine [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Soltani, Ali [Auteur]
Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] [3IT]
Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] [LN2]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Puissance - IEMN [PUISSANCE - IEMN]
Liverpool John Morres University - LJMU (UK)
Benbakhti, Brahim [Auteur]
Liverpool John Morres University - LJMU (UK)
Zhang, Wei [Auteur]
Liverpool John Morres University - LJMU (UK)
Ahmeda, Khaled [Auteur]
Cardiff Metropolitan University
Kalna, Karol [Auteur]
Swansea University
Boucherta, Mohammed [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Mattalah, Maghnia [Auteur]
Université Saad Dahleb [Blida, Algeria]
Chahdi, Hassane Ouazzani [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Puissance - IEMN [PUISSANCE - IEMN]
Bourzgui, Nour-Eddine [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Soltani, Ali [Auteur]

Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] [3IT]
Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] [LN2]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Puissance - IEMN [PUISSANCE - IEMN]
Titre de la revue :
IEEE Transactions on Electron Devices
Pagination :
1924-1930
Éditeur :
Institute of Electrical and Electronics Engineers
Date de publication :
2020-04-01
ISSN :
0018-9383
Mot(s)-clé(s) en anglais :
HEMTs
MODFETs
Logic gates
Aluminum gallium nitride
Wide band gap semiconductors
Degradation
Transient analysis
MODFETs
Logic gates
Aluminum gallium nitride
Wide band gap semiconductors
Degradation
Transient analysis
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
A new parametric and cost-effective technique is developed to decouple the mechanisms behind current degradation in AlGaN/GaN high-electron mobility transistors (HEMTs) under a normal device operation: self-heating and ...
Lire la suite >A new parametric and cost-effective technique is developed to decouple the mechanisms behind current degradation in AlGaN/GaN high-electron mobility transistors (HEMTs) under a normal device operation: self-heating and charge trapping. Our unique approach investigates charge trapping using both source (IS) and drain (ID) transient currents for the first time. Two types of charge-trapping mechanisms are identified: 1) bulk charge trapping occurring on a timescale of less than 1 ms and 2) surface charge trapping with a time constant larger than a millisecond. Through monitoring the difference between IS and ID, a bulk charge-trapping time constant is found to be independent of both drain (V DS ) and gate (V GS ) biases. Surface charge trapping is found to have a much greater impact on slow degradation than bulk trapping and self-heating. At a short timescale (<; 1 ms), the RF performance is mainly restricted by both bulk charge-trapping and self-heating effects. However, at a longer time (>1 ms), the dynamic ON-resistance degradation is predominantly limited by surface charge trapping.Lire moins >
Lire la suite >A new parametric and cost-effective technique is developed to decouple the mechanisms behind current degradation in AlGaN/GaN high-electron mobility transistors (HEMTs) under a normal device operation: self-heating and charge trapping. Our unique approach investigates charge trapping using both source (IS) and drain (ID) transient currents for the first time. Two types of charge-trapping mechanisms are identified: 1) bulk charge trapping occurring on a timescale of less than 1 ms and 2) surface charge trapping with a time constant larger than a millisecond. Through monitoring the difference between IS and ID, a bulk charge-trapping time constant is found to be independent of both drain (V DS ) and gate (V GS ) biases. Surface charge trapping is found to have a much greater impact on slow degradation than bulk trapping and self-heating. At a short timescale (<; 1 ms), the RF performance is mainly restricted by both bulk charge-trapping and self-heating effects. However, at a longer time (>1 ms), the dynamic ON-resistance degradation is predominantly limited by surface charge trapping.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Fichiers
- https://cronfa.swan.ac.uk/Record/cronfa54035/Download/54035__17205__0059c2870111439588ed8ded24854511.pdf
- Accès libre
- Accéder au document
- 54035__17205__0059c2870111439588ed8ded24854511.pdf
- Accès libre
- Accéder au document