Angular plasmon response of gold nanoparticles ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit
Auteur(s) :
Marae-Djouda, Joseph [Auteur]
EPF [Troyes]
Laboratoire de Nanotechnologie et d'Instrumentation Optique [LNIO]
Caputo, Roberto [Auteur]
Université Aboubekr Belkaid - University of Belkaïd Abou Bekr [Tlemcen]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Mahi, Nabil [Auteur]
Leveque, Gaetan [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
AKJOUJ, ABDELLATIF [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Adam, Pierre-Michel [Auteur]
Laboratoire de Nanotechnologie et d'Instrumentation Optique [LNIO]
Maurer, Thomas [Auteur]
Laboratoire de Nanotechnologie et d'Instrumentation Optique [LNIO]
EPF [Troyes]
Laboratoire de Nanotechnologie et d'Instrumentation Optique [LNIO]
Caputo, Roberto [Auteur]
Université Aboubekr Belkaid - University of Belkaïd Abou Bekr [Tlemcen]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Mahi, Nabil [Auteur]
Leveque, Gaetan [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
AKJOUJ, ABDELLATIF [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Adam, Pierre-Michel [Auteur]
Laboratoire de Nanotechnologie et d'Instrumentation Optique [LNIO]
Maurer, Thomas [Auteur]
Laboratoire de Nanotechnologie et d'Instrumentation Optique [LNIO]
Titre de la revue :
Nanophotonics
Pagination :
279-288
Éditeur :
De Gruyter
Date de publication :
2017-01-26
ISSN :
2192-8614
Mot(s)-clé(s) en anglais :
plasmonics
angle-resolved measurements
collective dipolar resonance
vertical mode
near-field coupling
nanoparticles array
angle-resolved measurements
collective dipolar resonance
vertical mode
near-field coupling
nanoparticles array
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Optique / photonique
Physique [physics]/Matière Condensée [cond-mat]
Physique [physics]/Physique [physics]/Optique [physics.optics]
Physique [physics]/Matière Condensée [cond-mat]
Physique [physics]/Physique [physics]/Optique [physics.optics]
Résumé en anglais : [en]
The regular arrangement of metal nanoparticles influences their plasmonic behavior. It has been previously demonstrated that the coupling between diffracted waves and plasmon modes can give rise to extremely narrow plasmon ...
Lire la suite >The regular arrangement of metal nanoparticles influences their plasmonic behavior. It has been previously demonstrated that the coupling between diffracted waves and plasmon modes can give rise to extremely narrow plasmon resonances. This is the case when the single-particle localized surface plasmon resonance (λLSP) is very close in value to the Rayleigh anomaly wavelength (λRA) of the nanoparticles array. In this paper, we performed angle-resolved extinction measurements on a 2D array of gold nano-cylinders designed to fulfil the condition λRA<λLSP. Varying the angle of excitation offers a unique possibility to finely modify the value of λRA, thus gradually approaching the condition of coupling between diffracted waves and plasmon modes. The experimental observation of a collective dipolar resonance has been interpreted by exploiting a simplified model based on the coupling of evanescent diffracted waves with plasmon modes. Among other plasmon modes, the measurement technique has also evidenced and allowed the study of a vertical plasmon mode, only visible in TM polarization at off-normal excitation incidence. The results of numerical simulations, based on the periodic Green’s tensor formalism, match well with the experimental transmission spectra and show fine details that could go unnoticed by considering only experimental data.Lire moins >
Lire la suite >The regular arrangement of metal nanoparticles influences their plasmonic behavior. It has been previously demonstrated that the coupling between diffracted waves and plasmon modes can give rise to extremely narrow plasmon resonances. This is the case when the single-particle localized surface plasmon resonance (λLSP) is very close in value to the Rayleigh anomaly wavelength (λRA) of the nanoparticles array. In this paper, we performed angle-resolved extinction measurements on a 2D array of gold nano-cylinders designed to fulfil the condition λRA<λLSP. Varying the angle of excitation offers a unique possibility to finely modify the value of λRA, thus gradually approaching the condition of coupling between diffracted waves and plasmon modes. The experimental observation of a collective dipolar resonance has been interpreted by exploiting a simplified model based on the coupling of evanescent diffracted waves with plasmon modes. Among other plasmon modes, the measurement technique has also evidenced and allowed the study of a vertical plasmon mode, only visible in TM polarization at off-normal excitation incidence. The results of numerical simulations, based on the periodic Green’s tensor formalism, match well with the experimental transmission spectra and show fine details that could go unnoticed by considering only experimental data.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- https://doi.org/10.1515/nanoph-2016-0112
- Accès libre
- Accéder au document
- https://doi.org/10.1515/nanoph-2016-0112
- Accès libre
- Accéder au document
- https://hal-utt.archives-ouvertes.fr/hal-02292656/document
- Accès libre
- Accéder au document
- https://doi.org/10.1515/nanoph-2016-0112
- Accès libre
- Accéder au document
- https://doi.org/10.1515/nanoph-2016-0112
- Accès libre
- Accéder au document
- https://hal-utt.archives-ouvertes.fr/hal-02292656/document
- Accès libre
- Accéder au document
- https://doi.org/10.1515/nanoph-2016-0112
- Accès libre
- Accéder au document
- https://doi.org/10.1515/nanoph-2016-0112
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- 10.1515_nanoph-2016-0112.pdf
- Accès libre
- Accéder au document
- nanoph-2016-0112
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- 10.1515_nanoph-2016-0112.pdf
- Accès libre
- Accéder au document