Tunneling mechanism and contact mechanics ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Tunneling mechanism and contact mechanics of colloidal nanoparticle assemblies
Auteur(s) :
Biaye, Moussa [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Zbydniewska, Ewa [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Melin, Thierry [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Deresmes, D. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Copie, Guillaume [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cleri, Fabrizio [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Sangeetha, Neralagatta [Auteur]
Laboratoire de physique et chimie des nano-objets [LPCNO]
Decorde, Nicolas [Auteur]
Laboratoire de physique et chimie des nano-objets [LPCNO]
Viallet, Benoit [Auteur]
Laboratoire de physique et chimie des nano-objets [LPCNO]
Grisolia, Jérémie [Auteur]
Laboratoire de physique et chimie des nano-objets [LPCNO]
Ressier, Laurence [Auteur]
Laboratoire de physique et chimie des nano-objets [LPCNO]
Diesinger, Heinrich [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Zbydniewska, Ewa [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Melin, Thierry [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Deresmes, D. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Copie, Guillaume [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cleri, Fabrizio [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Sangeetha, Neralagatta [Auteur]
Laboratoire de physique et chimie des nano-objets [LPCNO]
Decorde, Nicolas [Auteur]
Laboratoire de physique et chimie des nano-objets [LPCNO]
Viallet, Benoit [Auteur]
Laboratoire de physique et chimie des nano-objets [LPCNO]
Grisolia, Jérémie [Auteur]
Laboratoire de physique et chimie des nano-objets [LPCNO]
Ressier, Laurence [Auteur]
Laboratoire de physique et chimie des nano-objets [LPCNO]
Diesinger, Heinrich [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la revue :
Nanotechnology
Pagination :
475502
Éditeur :
Institute of Physics
Date de publication :
2016-11-25
ISSN :
0957-4484
Discipline(s) HAL :
Chimie
Résumé en anglais : [en]
Nanoparticle assemblies with thiol-terminated alkyl chains are studied by conducting atomic force microscopy (c-AFM) regarding their use as strain gauges for touch-sensitive panels. Current–force spectroscopy is used as a ...
Lire la suite >Nanoparticle assemblies with thiol-terminated alkyl chains are studied by conducting atomic force microscopy (c-AFM) regarding their use as strain gauges for touch-sensitive panels. Current–force spectroscopy is used as a characterization tool complementary to the macroscopic setup since it allows a bias to be applied to a limited number of junctions, overcoming the Coulomb blockade energy and focusing on the contact electromechanics and the transport mechanism across the ligand. First, transition voltage spectroscopy is applied with varying force to target the underlying tunneling mechanism by observing whether the transition between the ohmic and exponential current–voltage behavior is force-dependent. Secondly, current–force spectroscopy in the ohmic range below the transition voltage is performed. The current–force behavior of the AFM probe in contact with a nanoparticle multilayer is associated with the spread of force and current within the nanoparticle lattice and at the level of adjacent particles by detailed contact mechanics treatment. The result is twofold: concerning the architecture of sensors, this work is a sample case of contact electromechanics at scales ranging from the device scale down to the individual ligand molecule. Regarding transport across the molecule, the vacuum tunneling mechanism is favored over the conduction by coherent molecular states, which is a decision-making aid for the choice of ligand in applications.Lire moins >
Lire la suite >Nanoparticle assemblies with thiol-terminated alkyl chains are studied by conducting atomic force microscopy (c-AFM) regarding their use as strain gauges for touch-sensitive panels. Current–force spectroscopy is used as a characterization tool complementary to the macroscopic setup since it allows a bias to be applied to a limited number of junctions, overcoming the Coulomb blockade energy and focusing on the contact electromechanics and the transport mechanism across the ligand. First, transition voltage spectroscopy is applied with varying force to target the underlying tunneling mechanism by observing whether the transition between the ohmic and exponential current–voltage behavior is force-dependent. Secondly, current–force spectroscopy in the ohmic range below the transition voltage is performed. The current–force behavior of the AFM probe in contact with a nanoparticle multilayer is associated with the spread of force and current within the nanoparticle lattice and at the level of adjacent particles by detailed contact mechanics treatment. The result is twofold: concerning the architecture of sensors, this work is a sample case of contact electromechanics at scales ranging from the device scale down to the individual ligand molecule. Regarding transport across the molecule, the vacuum tunneling mechanism is favored over the conduction by coherent molecular states, which is a decision-making aid for the choice of ligand in applications.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :