Atomistic simulation of plasticity in ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
Atomistic simulation of plasticity in silicon nanowires
Author(s) :
Cleri, Fabrizio [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Ishida, T. [Auteur]
The University of Tokyo [UTokyo]
Collard, D. [Auteur]
Laboratory for Integrated Micro Mechatronics Systems [LIMMS]
Fujita, H. [Auteur]
The University of Tokyo [UTokyo]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Ishida, T. [Auteur]
The University of Tokyo [UTokyo]
Collard, D. [Auteur]
Laboratory for Integrated Micro Mechatronics Systems [LIMMS]
Fujita, H. [Auteur]
The University of Tokyo [UTokyo]
Journal title :
Applied Physics Letters
Pages :
153106
Publisher :
American Institute of Physics
Publication date :
2010
ISSN :
0003-6951
HAL domain(s) :
Physique [physics]/Mécanique [physics]/Mécanique des matériaux [physics.class-ph]
English abstract : [en]
We study the tensile deformation of polycrystalline Si nanowires by means of molecular dynamics simulations. The initial microstructure is composed by a network of nanocrystals glued together by a thin layer of amorphous ...
Show more >We study the tensile deformation of polycrystalline Si nanowires by means of molecular dynamics simulations. The initial microstructure is composed by a network of nanocrystals glued together by a thin layer of amorphous material. Atomistic simulations could clearly identify liquidlike flow in the constrained amorphous Si as the responsible for the observed elongation. After this first stage of nearly constant-stress flow, a necking instability sets in, eventually leading to fracture, at the point when the nanowire diameter becomes comparable to the size of the nanocrystalsShow less >
Show more >We study the tensile deformation of polycrystalline Si nanowires by means of molecular dynamics simulations. The initial microstructure is composed by a network of nanocrystals glued together by a thin layer of amorphous material. Atomistic simulations could clearly identify liquidlike flow in the constrained amorphous Si as the responsible for the observed elongation. After this first stage of nearly constant-stress flow, a necking instability sets in, eventually leading to fracture, at the point when the nanowire diameter becomes comparable to the size of the nanocrystalsShow less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Non spécifiée
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-00549042/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-00549042/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Cleri_2010_1.3501987.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- Cleri_2010_1.3501987.pdf
- Open access
- Access the document