Design optimization of AlInAs-GaInAs HEMTs ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
Design optimization of AlInAs-GaInAs HEMTs for low-noise applications
Author(s) :
Mateos, Javier [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
González, Tomás [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Pardo, Daniel [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Bollaert, Sylvain [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Parenty, Thierry [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cappy, Alain [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Universidad de Salamanca [España] = University of Salamanca [Spain]
González, Tomás [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Pardo, Daniel [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Bollaert, Sylvain [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Parenty, Thierry [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cappy, Alain [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
IEEE Transactions on Electron Devices
Pages :
1228-1233
Publisher :
Institute of Electrical and Electronics Engineers
Publication date :
2004-08
ISSN :
0018-9383
English keyword(s) :
Semiconductor device modeling
Semiconductor device noise
Semiconductor device doping
Monte Carlo methods
Optimization methods
Resistance
Capacitance
Aluminum compounds
Gallium compounds
MODFETs
Semiconductor device noise
Semiconductor device doping
Monte Carlo methods
Optimization methods
Resistance
Capacitance
Aluminum compounds
Gallium compounds
MODFETs
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
In order to optimize the low-noise performance of 50-nm-gate AlInAs-GalnAs high-electron mobility transistors (HEMTs), by using an ensemble Monte Carlo simulation we study the influence of three important technological ...
Show more >In order to optimize the low-noise performance of 50-nm-gate AlInAs-GalnAs high-electron mobility transistors (HEMTs), by using an ensemble Monte Carlo simulation we study the influence of three important technological parameters on their noise level: the doping of the /spl delta/-doped layer, the width of the devices and the length of the recess. The noise behavior of the devices is firstly analyzed in terms of the physics-based P, R, and C parameters, and then characterized from a practical (circuit oriented) point of view through their four noise parameters: minimum noise figure, F/sub min/, noise resistance, R/sub n/, and complex input admittance, Y/sub opt/ (or reflection coefficient, /spl Gamma//sub opt/). We have observed an enhancement of the noise when the /spl delta/-doping or the device width are increased (a deterioration parallel to that of f/sub max/). Thus, the optimum noise operation is obtained for the lowest possible values of the /spl delta/-doping and device width. However, for small width the effect of the offset parasitic capacitances makes F/sub min/ increase, thus, imposing a limit for the reduction of the noise. Moreover, the increase of R/sub n/ for small W makes the noise tuning condition critical to reach the optimum low-noise operation. We have also confirmed that when shortening the recess length from 100 to 20 nm at each side of the gate F/sub min/ is reduced, with a slight deterioration of f/sub max/, while the static characteristics are not modified.Show less >
Show more >In order to optimize the low-noise performance of 50-nm-gate AlInAs-GalnAs high-electron mobility transistors (HEMTs), by using an ensemble Monte Carlo simulation we study the influence of three important technological parameters on their noise level: the doping of the /spl delta/-doped layer, the width of the devices and the length of the recess. The noise behavior of the devices is firstly analyzed in terms of the physics-based P, R, and C parameters, and then characterized from a practical (circuit oriented) point of view through their four noise parameters: minimum noise figure, F/sub min/, noise resistance, R/sub n/, and complex input admittance, Y/sub opt/ (or reflection coefficient, /spl Gamma//sub opt/). We have observed an enhancement of the noise when the /spl delta/-doping or the device width are increased (a deterioration parallel to that of f/sub max/). Thus, the optimum noise operation is obtained for the lowest possible values of the /spl delta/-doping and device width. However, for small width the effect of the offset parasitic capacitances makes F/sub min/ increase, thus, imposing a limit for the reduction of the noise. Moreover, the increase of R/sub n/ for small W makes the noise tuning condition critical to reach the optimum low-noise operation. We have also confirmed that when shortening the recess length from 100 to 20 nm at each side of the gate F/sub min/ is reduced, with a slight deterioration of f/sub max/, while the static characteristics are not modified.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :