Surface electromagnetic waves in Fibonacci ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Surface electromagnetic waves in Fibonacci superlattices: theoretical and experimental results
Auteur(s) :
El Hassouani, Y. [Auteur]
Aynaou, H. [Auteur]
El Boudouti, E.H. [Auteur]
Djafari-Rouhani, Bahram [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
AKJOUJ, ABDELLATIF [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Velasco, V.R. [Auteur]
Aynaou, H. [Auteur]
El Boudouti, E.H. [Auteur]
Djafari-Rouhani, Bahram [Auteur]

Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
AKJOUJ, ABDELLATIF [Auteur]

Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Velasco, V.R. [Auteur]
Titre de la revue :
Physical Review B: Condensed Matter and Materials Physics (1998-2015)
Pagination :
035314-1-11
Éditeur :
American Physical Society
Date de publication :
2006
ISSN :
1098-0121
Discipline(s) HAL :
Physique [physics]
Résumé en anglais : [en]
We study theoretically and experimentally the existence and behavior of the localized surface modes in one-dimensional (1D) quasiperiodic photonic band gap structures. These structures are made of segments and loops arranged ...
Lire la suite >We study theoretically and experimentally the existence and behavior of the localized surface modes in one-dimensional (1D) quasiperiodic photonic band gap structures. These structures are made of segments and loops arranged according to a Fibonacci sequence. The experiments are carried out by using coaxial cables in the frequency region of a few tens of MHz. We consider 1D periodic structures (superlattice) where each cell is a well-defined Fibonacci generation. In these structures, we generalize a theoretical rule on the surface modes, namely when one considers two semi-infinite superlattices obtained by the cleavage of an infinite superlattice, it exists exactly one surface mode in each gap. This mode is localized on the surface either of one or the other semi-infinite superlattice. We discuss the existence of various types of surface modes and their spatial localization. The experimental observation of these modes is carried out by measuring the transmission through a guide along which a finite superlattice (i.e., constituted of a finite number of quasiperiodic cells) is grafted vertically. The surface modes appear as maxima of the transmission spectrum. These experiments are in good agreement with the theoretical model based on the formalism of the Green function.Lire moins >
Lire la suite >We study theoretically and experimentally the existence and behavior of the localized surface modes in one-dimensional (1D) quasiperiodic photonic band gap structures. These structures are made of segments and loops arranged according to a Fibonacci sequence. The experiments are carried out by using coaxial cables in the frequency region of a few tens of MHz. We consider 1D periodic structures (superlattice) where each cell is a well-defined Fibonacci generation. In these structures, we generalize a theoretical rule on the surface modes, namely when one considers two semi-infinite superlattices obtained by the cleavage of an infinite superlattice, it exists exactly one surface mode in each gap. This mode is localized on the surface either of one or the other semi-infinite superlattice. We discuss the existence of various types of surface modes and their spatial localization. The experimental observation of these modes is carried out by measuring the transmission through a guide along which a finite superlattice (i.e., constituted of a finite number of quasiperiodic cells) is grafted vertically. The surface modes appear as maxima of the transmission spectrum. These experiments are in good agreement with the theoretical model based on the formalism of the Green function.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-00127860/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-00127860/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- elhassouani2006.pdf
- Accès libre
- Accéder au document