ZnO/Carbon nanowalls shell/core nanostructures ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
ZnO/Carbon nanowalls shell/core nanostructures as electrodes for supercapacitors
Auteur(s) :
Guerra, Abdelouadoud [Auteur]
Achour, Amine [Auteur]
Vizireanu, Sorin [Auteur]
National Institute for Laser, Plasma and Radiation Physics [INFLPR]
Dinescu, Gheorghe [Auteur]
National Institute for Laser, Plasma and Radiation Physics [INFLPR]
Messaci, Samira [Auteur]
Hadjersi, Toufik [Auteur]
Boukherroub, Rabah [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Coffinier, Yannick [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pireaux, Jean-Jacques [Auteur]
Centre de Recherche en Physique de la Matière et du Rayonnement [Namur] [PMR]
Achour, Amine [Auteur]
Vizireanu, Sorin [Auteur]
National Institute for Laser, Plasma and Radiation Physics [INFLPR]
Dinescu, Gheorghe [Auteur]
National Institute for Laser, Plasma and Radiation Physics [INFLPR]
Messaci, Samira [Auteur]
Hadjersi, Toufik [Auteur]
Boukherroub, Rabah [Auteur]

NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Coffinier, Yannick [Auteur]

NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pireaux, Jean-Jacques [Auteur]
Centre de Recherche en Physique de la Matière et du Rayonnement [Namur] [PMR]
Titre de la revue :
Applied Surface Science
Pagination :
926-932
Éditeur :
Elsevier
Date de publication :
2019-07
ISSN :
0169-4332
Mot(s)-clé(s) en anglais :
Carbon nanowalls
Electrochemical capacitors
PLD deposition
ZnO
Electrochemical capacitors
PLD deposition
ZnO
Discipline(s) HAL :
Chimie/Chimie analytique
Chimie/Matériaux
Sciences du Vivant [q-bio]/Biochimie, Biologie Moléculaire
Sciences du Vivant [q-bio]/Neurosciences [q-bio.NC]
Chimie
Physique [physics]
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Chimie/Matériaux
Sciences du Vivant [q-bio]/Biochimie, Biologie Moléculaire
Sciences du Vivant [q-bio]/Neurosciences [q-bio.NC]
Chimie
Physique [physics]
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Résumé en anglais : [en]
In this work, carbon nanowalls (CNW) were coated with zinc oxide (ZnO) for use as supercapacitor electrodes. The ZnO layers of different thicknesses were deposited using pulsed laser ablation in oxygen reactive atmosphere. ...
Lire la suite >In this work, carbon nanowalls (CNW) were coated with zinc oxide (ZnO) for use as supercapacitor electrodes. The ZnO layers of different thicknesses were deposited using pulsed laser ablation in oxygen reactive atmosphere. The performance of the CNW-ZnO electrodes was found to be dependent on the thickness of ZnO deposit, which in turn influences the specific capacitance and capacitance retention of the CNW-ZnO electrodes. The areal capacitance of the CNW-ZnO measured in mild electrolyte of 1 M KCl was as high as 4.3 mF•cm −2 at a current density of 0.2 mA•cm −2 and 1.41 mF•cm −2 at a scan rate of 10 mV•s −1 with an enhanced capacitance stability over 26,000 cycles. Such results demonstrate the potential use of ZnO nanostructures for low cost and high performance material for electrochemical capacitors.Lire moins >
Lire la suite >In this work, carbon nanowalls (CNW) were coated with zinc oxide (ZnO) for use as supercapacitor electrodes. The ZnO layers of different thicknesses were deposited using pulsed laser ablation in oxygen reactive atmosphere. The performance of the CNW-ZnO electrodes was found to be dependent on the thickness of ZnO deposit, which in turn influences the specific capacitance and capacitance retention of the CNW-ZnO electrodes. The areal capacitance of the CNW-ZnO measured in mild electrolyte of 1 M KCl was as high as 4.3 mF•cm −2 at a current density of 0.2 mA•cm −2 and 1.41 mF•cm −2 at a scan rate of 10 mV•s −1 with an enhanced capacitance stability over 26,000 cycles. Such results demonstrate the potential use of ZnO nanostructures for low cost and high performance material for electrochemical capacitors.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03335610/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03335610/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03335610/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Guerra_2019_AppliedSurfaceScience-1.pdf
- Accès libre
- Accéder au document