On Strict Homogeneous Lyapunov Function ...
Type de document :
Communication dans un congrès avec actes
Titre :
On Strict Homogeneous Lyapunov Function for Generalized Homogeneous PI Controller
Auteur(s) :
Zhou, Yu [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Polyakov, Andrey [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Zheng, Gang [Auteur]
Deformable Robots Simulation Team [DEFROST ]
Finite-time control and estimation for distributed systems [VALSE]
Polyakov, Andrey [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Zheng, Gang [Auteur]
Deformable Robots Simulation Team [DEFROST ]
Titre de la manifestation scientifique :
The 60th Conference on Decision and Control
Ville :
Austin
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2021-12-13
Discipline(s) HAL :
Informatique [cs]/Automatique
Résumé en anglais : [en]
This paper investigates a generalized homogeneous PI (Proportional-Integral) control for a linear plant. A Lyapunov function for analysis of the closed-loop system is designed. For negative homogeneity degree, the obtained ...
Lire la suite >This paper investigates a generalized homogeneous PI (Proportional-Integral) control for a linear plant. A Lyapunov function for analysis of the closed-loop system is designed. For negative homogeneity degree, the obtained Lyapunov function becomes a strict Lyapunov function allowing an advanced analysis to be provided. In particular, a class of the disturbances to be rejected by the control law is characterized, a maximum control magnitude and the settling-time of the closedloop system are estimated.Lire moins >
Lire la suite >This paper investigates a generalized homogeneous PI (Proportional-Integral) control for a linear plant. A Lyapunov function for analysis of the closed-loop system is designed. For negative homogeneity degree, the obtained Lyapunov function becomes a strict Lyapunov function allowing an advanced analysis to be provided. In particular, a class of the disturbances to be rejected by the control law is characterized, a maximum control magnitude and the settling-time of the closedloop system are estimated.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-03349701/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-03349701/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-03349701/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- CDC21_1055_FI.pdf
- Accès libre
- Accéder au document