Fooling an Automatic Image Quality Estimator
Document type :
Communication dans un congrès avec actes
Title :
Fooling an Automatic Image Quality Estimator
Author(s) :
Bonnet, Benoit [Auteur]
Creating and exploiting explicit links between multimedia fragments [LinkMedia]
Furon, Teddy [Auteur]
Creating and exploiting explicit links between multimedia fragments [LinkMedia]
Bas, Patrick [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Creating and exploiting explicit links between multimedia fragments [LinkMedia]
Furon, Teddy [Auteur]
Creating and exploiting explicit links between multimedia fragments [LinkMedia]
Bas, Patrick [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Conference title :
MediaEval 2020 - MediaEval Benchmarking Intiative for Multimedia Evaluation
City :
Online
Country :
Etats-Unis d'Amérique
Start date of the conference :
2020-12-14
HAL domain(s) :
Informatique [cs]/Traitement du signal et de l'image [eess.SP]
English abstract : [en]
This paper presents our work on the 2020 MediaEval task: “Pixel Privacy: Quality Camouflage for Social Images". Blind Image Quality Assessment (BIQA) is an algorithm predicting a quality score for any given image. Our task ...
Show more >This paper presents our work on the 2020 MediaEval task: “Pixel Privacy: Quality Camouflage for Social Images". Blind Image Quality Assessment (BIQA) is an algorithm predicting a quality score for any given image. Our task is to modify an image to decrease its BIQA score while maintaining a good perceived quality. Since BIQA is a deep neural network, we worked on an adversarial attack approach of the problem.Show less >
Show more >This paper presents our work on the 2020 MediaEval task: “Pixel Privacy: Quality Camouflage for Social Images". Blind Image Quality Assessment (BIQA) is an algorithm predicting a quality score for any given image. Our task is to modify an image to decrease its BIQA score while maintaining a good perceived quality. Since BIQA is a deep neural network, we worked on an adversarial attack approach of the problem.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-03132891/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03132891/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03132891/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Linkmedia_pprivacy_f.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- Linkmedia_pprivacy_f.pdf
- Open access
- Access the document