Surface micromachining of chip-edge silicon ...
Document type :
Article dans une revue scientifique
DOI :
Permalink :
Title :
Surface micromachining of chip-edge silicon microcantilevers using xenon difluoride etching of silicon-on-insulator
Author(s) :
Lerond, Thomas [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Yarekha, Dmitri [Auteur]
Centrale de Micro Nano Fabrication - IEMN [CMNF - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Avramovic, Vanessa [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plateforme de Caractérisation Multi-Physiques - IEMN [PCMP - IEMN]
Melin, Thierry [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Arscott, S. [Auteur]
Nano and Microsystems - IEMN [NAM6 - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Yarekha, Dmitri [Auteur]

Centrale de Micro Nano Fabrication - IEMN [CMNF - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Avramovic, Vanessa [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Plateforme de Caractérisation Multi-Physiques - IEMN [PCMP - IEMN]
Melin, Thierry [Auteur]

Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Arscott, S. [Auteur]
Nano and Microsystems - IEMN [NAM6 - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
Journal of Micromechanics and Microengineering
Pages :
085001
Publisher :
IOP Publishing
Publication date :
2021-08
ISSN :
0960-1317
English keyword(s) :
surface micromachining
xenon difluoride
silicon microtechnology
microcantilever
microelectromechanical systems
fabrication technology
prototyping
xenon difluoride
silicon microtechnology
microcantilever
microelectromechanical systems
fabrication technology
prototyping
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
We demonstrate a straightforward surface micromachining process for the rapid prototyping of thin 'chip-edge' silicon microcantilevers protruding from the edge of a silicon-on-insulator (SOI) chip. The process uses a single ...
Show more >We demonstrate a straightforward surface micromachining process for the rapid prototyping of thin 'chip-edge' silicon microcantilevers protruding from the edge of a silicon-on-insulator (SOI) chip. The process uses a single photolithographic mask-with xenon difluoride used to both pattern the silicon microcantilevers and release them by etching part of the underlying silicon wafer. During the release step, the silicon microcantilevers are protected from the xenon difluoride by a combination of photoresist and buried silicon dioxide. The use of common microfabrication materials (SOI and positive photoresist) and chemicals (buffered hydrofluoric acid and xenon difluoride), along with a maximum process temperature of 100 °C, makes for a generic, soft micromachining process which is-in principle-compatible with preserving the integrity of any pre-patterned circuitry present on the silicon microcantilever top surface. Doppler vibrometry measurements of the silicon microcantilevers reveal a well-defined resonant frequency and a quality factor comparable with that of similar silicon microcantilevers fabricated using other means. Our enabling technological process allows the rapid prototyping of chip-edge silicon microcantilevers-potentially integrating sensitive circuitry for novel probe technologies-by avoiding the relatively cumbersome, expensive, and potentially circuit-damaging front-to-back processing/deep etching combination.Show less >
Show more >We demonstrate a straightforward surface micromachining process for the rapid prototyping of thin 'chip-edge' silicon microcantilevers protruding from the edge of a silicon-on-insulator (SOI) chip. The process uses a single photolithographic mask-with xenon difluoride used to both pattern the silicon microcantilevers and release them by etching part of the underlying silicon wafer. During the release step, the silicon microcantilevers are protected from the xenon difluoride by a combination of photoresist and buried silicon dioxide. The use of common microfabrication materials (SOI and positive photoresist) and chemicals (buffered hydrofluoric acid and xenon difluoride), along with a maximum process temperature of 100 °C, makes for a generic, soft micromachining process which is-in principle-compatible with preserving the integrity of any pre-patterned circuitry present on the silicon microcantilever top surface. Doppler vibrometry measurements of the silicon microcantilevers reveal a well-defined resonant frequency and a quality factor comparable with that of similar silicon microcantilevers fabricated using other means. Our enabling technological process allows the rapid prototyping of chip-edge silicon microcantilevers-potentially integrating sensitive circuitry for novel probe technologies-by avoiding the relatively cumbersome, expensive, and potentially circuit-damaging front-to-back processing/deep etching combination.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Source :
Submission date :
2021-11-13T05:06:31Z