The Fine-Structure Constant as a Ruler for ...
Document type :
Article dans une revue scientifique: Article original
Title :
The Fine-Structure Constant as a Ruler for the Band-Edge Light Absorption Strength of Bulk and Quantum-Confined Semiconductors
Author(s) :
Prins, P [Auteur]
Debye Institute for Nanomaterials Science
Alimoradi Jazi, Maryam [Auteur]
Universiteit Utrecht / Utrecht University [Utrecht]
Killilea, Niall [Auteur]
Friedrich-Alexander Universität Erlangen-Nürnberg = University of Erlangen-Nuremberg [FAU]
Evers, Wiel [Auteur]
Delft University of Technology [TU Delft]
Geiregat, Pieter [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Heiss, Wolfgang [Auteur]
Friedrich-Alexander Universität Erlangen-Nürnberg = University of Erlangen-Nuremberg [FAU]
Houtepen, Arjan [Auteur]
Delft University of Technology [TU Delft]
Delerue, Christophe [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Hens, Zeger [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Vanmaekelbergh, Daniel [Auteur correspondant]
Debye Institute for Nanomaterials Science
Debye Institute for Nanomaterials Science
Alimoradi Jazi, Maryam [Auteur]
Universiteit Utrecht / Utrecht University [Utrecht]
Killilea, Niall [Auteur]
Friedrich-Alexander Universität Erlangen-Nürnberg = University of Erlangen-Nuremberg [FAU]
Evers, Wiel [Auteur]
Delft University of Technology [TU Delft]
Geiregat, Pieter [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Heiss, Wolfgang [Auteur]
Friedrich-Alexander Universität Erlangen-Nürnberg = University of Erlangen-Nuremberg [FAU]
Houtepen, Arjan [Auteur]
Delft University of Technology [TU Delft]
Delerue, Christophe [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Hens, Zeger [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Vanmaekelbergh, Daniel [Auteur correspondant]
Debye Institute for Nanomaterials Science
Journal title :
Nano Letters
Pages :
9426–9432
Publisher :
American Chemical Society
Publication date :
2021-11-24
ISSN :
1530-6984
English keyword(s) :
fine-structure constant
optical transitions
light absorption
dielectric screening
quantum coupling
optical transitions
light absorption
dielectric screening
quantum coupling
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]
English abstract : [en]
Low-dimensional semiconductors have found numerous applications in optoelectronics. However, a quantitative comparison of the absorption strength of lowdimensional versus bulk semiconductors has remained elusive. Here, we ...
Show more >Low-dimensional semiconductors have found numerous applications in optoelectronics. However, a quantitative comparison of the absorption strength of lowdimensional versus bulk semiconductors has remained elusive. Here, we report generality in the band-edge light absorptance of semiconductors, independent of their dimensions. First, we provide atomistic tight-binding calculations that show that the absorptance of semiconductor quantum wells equals mπα (m = 1 or 2 with α as the fine-structure constant), in agreement with reported experimental results. Then, we show experimentally that a monolayer (superlattice) of quantum dots has similar absorptance, suggesting an absorptance quantum of mπα per (confined) exciton diameter. Extending this idea to bulk semiconductors, we experimentally demonstrate that an absorptance quantum equal to mπα per exciton Bohr diameter explains their widely varying absorption coefficients. We thus provided compelling evidence that the absorptance quantum πα per exciton diameter rules the band-edge absorption of all direct semiconductors, regardless of their dimension.Show less >
Show more >Low-dimensional semiconductors have found numerous applications in optoelectronics. However, a quantitative comparison of the absorption strength of lowdimensional versus bulk semiconductors has remained elusive. Here, we report generality in the band-edge light absorptance of semiconductors, independent of their dimensions. First, we provide atomistic tight-binding calculations that show that the absorptance of semiconductor quantum wells equals mπα (m = 1 or 2 with α as the fine-structure constant), in agreement with reported experimental results. Then, we show experimentally that a monolayer (superlattice) of quantum dots has similar absorptance, suggesting an absorptance quantum of mπα per (confined) exciton diameter. Extending this idea to bulk semiconductors, we experimentally demonstrate that an absorptance quantum equal to mπα per exciton Bohr diameter explains their widely varying absorption coefficients. We thus provided compelling evidence that the absorptance quantum πα per exciton diameter rules the band-edge absorption of all direct semiconductors, regardless of their dimension.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
European Project :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-03430478/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03430478/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03430478/document
- Open access
- Access the document
- document
- Open access
- Access the document
- fine_structure_abs_NL_21.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- fine_structure_abs_NL_21.pdf
- Open access
- Access the document