Blind digital modulation classification ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Blind digital modulation classification for STBC‐OFDM system in presence of CFO and channels estimation errors
Auteur(s) :
Dehri, Brahim [Auteur]
Besseghier, Mokhtar [Auteur]
Université Mustapha Stambouli de Mascara [Algérie] = University Mustapha Stambouli [Mascara, Algeria] [UMSM]
Djebbar, A.B. [Auteur]
Dayoub, Iyad [Auteur]
INSA Institut National des Sciences Appliquées Hauts-de-France [INSA Hauts-De-France]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 [IEMN-DOAE]
Besseghier, Mokhtar [Auteur]
Université Mustapha Stambouli de Mascara [Algérie] = University Mustapha Stambouli [Mascara, Algeria] [UMSM]
Djebbar, A.B. [Auteur]
Dayoub, Iyad [Auteur]

INSA Institut National des Sciences Appliquées Hauts-de-France [INSA Hauts-De-France]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 [IEMN-DOAE]
Titre de la revue :
IET Communications
Pagination :
2827-2833
Éditeur :
Institution of Engineering and Technology
Date de publication :
2019-10-29
ISSN :
1751-8628
Discipline(s) HAL :
Informatique [cs]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Sciences de l'ingénieur [physics]/Electronique
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Sciences de l'ingénieur [physics]/Electronique
Résumé en anglais : [en]
Here, the authors propose a robust blind digital modulation classification (BDMC) algorithm for space time block coding (STBC)-based MIMO-OFDM system in the presence of carrier frequency offset (CFO) and channel estimation ...
Lire la suite >Here, the authors propose a robust blind digital modulation classification (BDMC) algorithm for space time block coding (STBC)-based MIMO-OFDM system in the presence of carrier frequency offset (CFO) and channel estimation errors. Previous papers published on the topic of modulation identification were limited to single-carrier systems operating over frequency-flat channels. The problem of joint channel and CFO estimation in conjunction with blind digital modulation classification for STBC-OFDM in frequency selective channel and in the presence of the impulsive noise has not been addressed before to the best of their knowledge. To cope with performance degradation of BDMC due to CFO and channels errors, they propose joint semi-blind CFO and channels estimation methods. Higher order statistics (HOS), used for feature extraction, are combined with pattern recognition methods to solve the modulation identification problem. The main contribution of their work is the development of estimators, the study of their impacts on the blind classification capability, and the use of simulations to demonstrate the superior performance of the proposed algorithms.Lire moins >
Lire la suite >Here, the authors propose a robust blind digital modulation classification (BDMC) algorithm for space time block coding (STBC)-based MIMO-OFDM system in the presence of carrier frequency offset (CFO) and channel estimation errors. Previous papers published on the topic of modulation identification were limited to single-carrier systems operating over frequency-flat channels. The problem of joint channel and CFO estimation in conjunction with blind digital modulation classification for STBC-OFDM in frequency selective channel and in the presence of the impulsive noise has not been addressed before to the best of their knowledge. To cope with performance degradation of BDMC due to CFO and channels errors, they propose joint semi-blind CFO and channels estimation methods. Higher order statistics (HOS), used for feature extraction, are combined with pattern recognition methods to solve the modulation identification problem. The main contribution of their work is the development of estimators, the study of their impacts on the blind classification capability, and the use of simulations to demonstrate the superior performance of the proposed algorithms.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
JIF=1.664
Source :