2-Step Prediction for Detecting Attacker ...
Type de document :
Communication dans un congrès avec actes
Titre :
2-Step Prediction for Detecting Attacker in Vehicle to Vehicle Communication
Auteur(s) :
Kushardianto, Nur Cahyono [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Hillali, Yassin [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Tatkeu, Charles [Auteur]
Laboratoire Électronique Ondes et Signaux pour les Transports [COSYS-LEOST ]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Hillali, Yassin [Auteur]

COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Tatkeu, Charles [Auteur]
Laboratoire Électronique Ondes et Signaux pour les Transports [COSYS-LEOST ]
Titre de la manifestation scientifique :
2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall)
Ville :
Norman, virtual
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2021-09-27
Éditeur :
IEEE
Mot(s)-clé(s) en anglais :
V2V
attack
detection
2-Step
attack
detection
2-Step
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Smart vehicles can be more adaptive to the road condition by exchange information between the vehicle. They can avoid traffic congestion, dangerous obstacles, even traffic accident earlier. This technology is closely related ...
Lire la suite >Smart vehicles can be more adaptive to the road condition by exchange information between the vehicle. They can avoid traffic congestion, dangerous obstacles, even traffic accident earlier. This technology is closely related to the safety of the driver, therefore it must receive special attention. V2V communication has the potential to threaten interference and even attacks. There have been many studies that have focused on finding solutions to deal with these disorders. The first step is to strengthen the system's ability to detect attacks on V2V. On the other hand, the development of Machine Learning (ML) looks very promising to support this goal. In the proposed scheme, a 2-Step Prediction for detecting attackers is used. This system is using two classifiers ML from two modified training datasets. We show that the proposed scheme can improve the attack detection performance compared to one detection step.Lire moins >
Lire la suite >Smart vehicles can be more adaptive to the road condition by exchange information between the vehicle. They can avoid traffic congestion, dangerous obstacles, even traffic accident earlier. This technology is closely related to the safety of the driver, therefore it must receive special attention. V2V communication has the potential to threaten interference and even attacks. There have been many studies that have focused on finding solutions to deal with these disorders. The first step is to strengthen the system's ability to detect attacks on V2V. On the other hand, the development of Machine Learning (ML) looks very promising to support this goal. In the proposed scheme, a 2-Step Prediction for detecting attackers is used. This system is using two classifiers ML from two modified training datasets. We show that the proposed scheme can improve the attack detection performance compared to one detection step.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :