Illumination-robust face recognition based ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Illumination-robust face recognition based on deep convolutional neural networks architectures
Auteur(s) :
Bendjillali, Ridha Ilyas [Auteur correspondant]
Beladgham, Mohammed [Auteur]
Merit, Khaled [Auteur]
Tahleb Ahmed, Abdelmalik [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 [IEMN-DOAE]
Beladgham, Mohammed [Auteur]
Merit, Khaled [Auteur]
Tahleb Ahmed, Abdelmalik [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 [IEMN-DOAE]
Titre de la revue :
Indonesian Journal of Electrical Engineering and Computer Science
Pagination :
1015-1027
Éditeur :
IAES
Date de publication :
2020
ISSN :
2502-4752
Mot(s)-clé(s) en anglais :
Face recognition
Inception-v3
M-CLAHE
ResNet50
VGG16
Inception-v3
M-CLAHE
ResNet50
VGG16
Discipline(s) HAL :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
In the last decade, facial recognition techniques are considered the most important fields of research in biometric technology. In this research paper, we present a Face Recognition (FR) system divided into three steps: ...
Lire la suite >In the last decade, facial recognition techniques are considered the most important fields of research in biometric technology. In this research paper, we present a Face Recognition (FR) system divided into three steps: The Viola-Jones face detection algorithm, facial image enhancement using Modified Contrast Limited Adaptive Histogram Equalization algorithm (M-CLAHE), and feature learning for classification. For learning the features followed by classification we used VGG16, ResNet50 and Inception-v3 Convolutional Neural Networks (CNN) architectures for the proposed system. Our experimental work was performed on the Extended Yale B database and CMU PIE face database. Finally, the comparison with the other methods on both databases shows the robustness and effectiveness of the proposed approach. Where the Inception-v3 architecture has achieved a rate of 99, 44% and 99, 89% respectively.Lire moins >
Lire la suite >In the last decade, facial recognition techniques are considered the most important fields of research in biometric technology. In this research paper, we present a Face Recognition (FR) system divided into three steps: The Viola-Jones face detection algorithm, facial image enhancement using Modified Contrast Limited Adaptive Histogram Equalization algorithm (M-CLAHE), and feature learning for classification. For learning the features followed by classification we used VGG16, ResNet50 and Inception-v3 Convolutional Neural Networks (CNN) architectures for the proposed system. Our experimental work was performed on the Extended Yale B database and CMU PIE face database. Finally, the comparison with the other methods on both databases shows the robustness and effectiveness of the proposed approach. Where the Inception-v3 architecture has achieved a rate of 99, 44% and 99, 89% respectively.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- http://ijeecs.iaescore.com/index.php/IJEECS/article/download/20562/13701
- Accès libre
- Accéder au document
- https://hal-uphf.archives-ouvertes.fr/hal-03564174/document
- Accès libre
- Accéder au document
- http://ijeecs.iaescore.com/index.php/IJEECS/article/download/20562/13701
- Accès libre
- Accéder au document
- https://hal-uphf.archives-ouvertes.fr/hal-03564174/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Ridha%20Ilyas%20Bendjillali_2020_IJEECS.pdf
- Accès libre
- Accéder au document
- 13701
- Accès libre
- Accéder au document