Design of core-shell titania-heteropolyacid-metal ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Design of core-shell titania-heteropolyacid-metal nanocomposites for photocatalytic reduction of co2 to co at ambient temperature
Auteur(s) :
Khodakov, Andrei [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Moldovan, Simona [Auteur]
Ordomsky, Vitaly [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Khodakov, Andrei [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Moldovan, Simona [Auteur]
Ordomsky, Vitaly [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Khodakov, Andrei [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Titre de la revue :
Nanoscale Advances
Nom court de la revue :
Nanoscale Adv.
Numéro :
1
Pagination :
4321-4330
Date de publication :
2019-11-01
ISSN :
2516-0230
Discipline(s) HAL :
Chimie/Catalyse
Résumé en anglais : [en]
The photocatalytic conversion of CO2 not only reduces the greenhouse effect, but also provides value-added solar fuels and chemicals. Herein, we report the design of new efficient core–shell nanocomposites for selective ...
Lire la suite >The photocatalytic conversion of CO2 not only reduces the greenhouse effect, but also provides value-added solar fuels and chemicals. Herein, we report the design of new efficient core–shell nanocomposites for selective photocatalytic CO2 to CO conversion, which occurs at ambient temperature. A combination of characterization techniques (TEM, STEM-EDX, XPS, XRD, FTIR photoluminescence) indicates that the CO2 reduction occurs over zinc species highly dispersed on the heteropolyacid/titania core–shell nanocomposites. These core–shell structures create a semiconductor heterojunction, which increases charge separation and the lifetime of charge carriers' and leads to higher electron flux. In situ FTIR investigation of the reaction mechanism revealed that the reaction involved surface zinc bicarbonates as key reaction intermediates. In a series of catalysts containing noble and transition metals, zinc phosphotungstic acid–titania nanocomposites exhibit high activity reaching 50 μmol CO g−1 h−1 and selectivity (73%) in the CO2 photocatalytic reduction to CO at ambient temperature. The competitive water splitting reaction has been significantly suppressed over the Zn sites in the presence of CO2.Lire moins >
Lire la suite >The photocatalytic conversion of CO2 not only reduces the greenhouse effect, but also provides value-added solar fuels and chemicals. Herein, we report the design of new efficient core–shell nanocomposites for selective photocatalytic CO2 to CO conversion, which occurs at ambient temperature. A combination of characterization techniques (TEM, STEM-EDX, XPS, XRD, FTIR photoluminescence) indicates that the CO2 reduction occurs over zinc species highly dispersed on the heteropolyacid/titania core–shell nanocomposites. These core–shell structures create a semiconductor heterojunction, which increases charge separation and the lifetime of charge carriers' and leads to higher electron flux. In situ FTIR investigation of the reaction mechanism revealed that the reaction involved surface zinc bicarbonates as key reaction intermediates. In a series of catalysts containing noble and transition metals, zinc phosphotungstic acid–titania nanocomposites exhibit high activity reaching 50 μmol CO g−1 h−1 and selectivity (73%) in the CO2 photocatalytic reduction to CO at ambient temperature. The competitive water splitting reaction has been significantly suppressed over the Zn sites in the presence of CO2.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
CNRS
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Collections :
Équipe(s) de recherche :
Catalyse pour l’énergie et la synthèse de molécules plateforme (CEMOP)
Date de dépôt :
2022-03-02T07:13:02Z
2023-11-27T13:57:45Z
2023-11-27T13:57:45Z
Fichiers
- c9na00398c.pdf
- Non spécifié
- Accès libre
- Accéder au document