Deciphering the origin of high electrochemical ...
Document type :
Article dans une revue scientifique: Article original
DOI :
PMID :
Permalink :
Title :
Deciphering the origin of high electrochemical performance in a novel ti-substituted p2/o3 biphasic cathode for sodium-ion batteries
Author(s) :
Hu, Bei [Auteur]
East China Normal University [Shangaï] [ECNU]
Geng, Fushan [Auteur]
East China Normal University [Shangaï] [ECNU]
Zhao, Chong [Auteur]
East China Normal University [Shangaï] [ECNU]
Doumert, Bertrand [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Trebosc, Julien [Auteur]
Lafon, Olivier [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Li, Chao [Auteur]
East China Normal University [Shangaï] [ECNU]
Shen, Ming [Auteur]
East China Normal University [Shangaï] [ECNU]
Hu, Bingwen [Auteur]
East China Normal University [Shangaï] [ECNU]
East China Normal University [Shangaï] [ECNU]
Geng, Fushan [Auteur]
East China Normal University [Shangaï] [ECNU]
Zhao, Chong [Auteur]
East China Normal University [Shangaï] [ECNU]
Doumert, Bertrand [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Trebosc, Julien [Auteur]

Lafon, Olivier [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Li, Chao [Auteur]
East China Normal University [Shangaï] [ECNU]
Shen, Ming [Auteur]
East China Normal University [Shangaï] [ECNU]
Hu, Bingwen [Auteur]
East China Normal University [Shangaï] [ECNU]
Journal title :
ACS Applied Materials & Interfaces
Abbreviated title :
ACS Appl Mater Interfaces
Volume number :
12
Pages :
41485–41494
Publisher :
American Chemical Society (ACS)
Publication date :
2020-08-24
ISSN :
1944-8252
English keyword(s) :
Mn charge compensation
oxygen redox
Ti-substitution
P2/O3-type cathode material
structure stability
oxygen redox
Ti-substitution
P2/O3-type cathode material
structure stability
HAL domain(s) :
Chimie/Catalyse
Chimie/Chimie inorganique
Chimie/Chimie inorganique
English abstract : [en]
The layered Mn-based oxides (NaxMnO2), which is one of the most promising cathode families for rechargeable sodium-ion batteries, have received considerable attention because of their tunable electrochemical performances ...
Show more >The layered Mn-based oxides (NaxMnO2), which is one of the most promising cathode families for rechargeable sodium-ion batteries, have received considerable attention because of their tunable electrochemical performances and low costs. Herein, a novel P2/O3 intergrown Li-containing Na0.8Li0.27Mn0.68Ti0.05O2 cathode material prepared by Ti-substitution into Mn-site is reported. Benefiting from the synergistic effects of the biphasic composite structure and inactive d0 element substitution, this P2/O3 electrode exhibits high initial charge/discharge capacity and excellent cycling performance. The combination of different characterization techniques including solid-state NMR, electron paramagnetic resonance, X-ray adsorption spectroscopy, and high-resolution transmission electron microscopy gives insights into the local electronic environment, the redox chemistry, and also the microstructure rigidity of these cathode materials upon cycling. On the basis of comprehensive comparison with the Ti-free P2/O3-Na0.8Li0.27Mn0.73O2, the observed improvement on the electrochemical performance is primarily attributed to the mitigation of notorious Mn3+/Mn4+ redox and the enhanced stability of the oxygen charge compensation behavior. From the viewpoint of structure evolution, Ti-substitution restrains the Li+ loss and irreversible structural degradation during cycling. This study provides an in-depth understanding of the electronic and crystal structure evolutions after inactive d0 element substitution and may shed light on the rational design of high-performance P2/O3 biphasic Mn-based layered cathodes.Show less >
Show more >The layered Mn-based oxides (NaxMnO2), which is one of the most promising cathode families for rechargeable sodium-ion batteries, have received considerable attention because of their tunable electrochemical performances and low costs. Herein, a novel P2/O3 intergrown Li-containing Na0.8Li0.27Mn0.68Ti0.05O2 cathode material prepared by Ti-substitution into Mn-site is reported. Benefiting from the synergistic effects of the biphasic composite structure and inactive d0 element substitution, this P2/O3 electrode exhibits high initial charge/discharge capacity and excellent cycling performance. The combination of different characterization techniques including solid-state NMR, electron paramagnetic resonance, X-ray adsorption spectroscopy, and high-resolution transmission electron microscopy gives insights into the local electronic environment, the redox chemistry, and also the microstructure rigidity of these cathode materials upon cycling. On the basis of comprehensive comparison with the Ti-free P2/O3-Na0.8Li0.27Mn0.73O2, the observed improvement on the electrochemical performance is primarily attributed to the mitigation of notorious Mn3+/Mn4+ redox and the enhanced stability of the oxygen charge compensation behavior. From the viewpoint of structure evolution, Ti-substitution restrains the Li+ loss and irreversible structural degradation during cycling. This study provides an in-depth understanding of the electronic and crystal structure evolutions after inactive d0 element substitution and may shed light on the rational design of high-performance P2/O3 biphasic Mn-based layered cathodes.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
ANR Project :
Other project(s) or funding source(s) :
National Natural Science Foundation of China (Nos. 21902049, 21703068, 21872055, and 21874045)
Shanghai Sailing Program (19YF1413000)
Fundamental Research Funds for the Central Universities
Graduate students overseas visiting project of East China Normal University
Chevreul Institute (FR 2638)
Ministère de l’Enseignement Supérieur de la Recherche et de l’Innovation
Région Hauts de France
FEDER
Institut Universitaire de France (IUF)
Shanghai Sailing Program (19YF1413000)
Fundamental Research Funds for the Central Universities
Graduate students overseas visiting project of East China Normal University
Chevreul Institute (FR 2638)
Ministère de l’Enseignement Supérieur de la Recherche et de l’Innovation
Région Hauts de France
FEDER
Institut Universitaire de France (IUF)
Administrative institution(s) :
CNRS
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Collections :
Research team(s) :
RMN et matériaux inorganiques (RM2I)
Submission date :
2022-03-02T07:14:59Z
2023-12-07T18:51:13Z
2023-12-07T18:51:13Z
Files
- P2-O3_Ti_post-print.pdf
- Version finale acceptée pour publication (postprint)
- Open access
- Access the document