Unravelling the influence of catalyst ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Unravelling the influence of catalyst properties on light olefin production via Fischer–Tropsch synthesis: A descriptor space investigation using Single-Event MicroKinetics
Author(s) :
Chakkingal, Anoop [Auteur]
Pirro, Laura [Auteur]
Costa da Cruz, A.R. [Auteur]
Barrios, Alan J. [Auteur]
Virginie, Mirella [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Khodakov, Andrei [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Thybaut, Joris W. [Auteur]
Pirro, Laura [Auteur]
Costa da Cruz, A.R. [Auteur]
Barrios, Alan J. [Auteur]
Virginie, Mirella [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Khodakov, Andrei [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Thybaut, Joris W. [Auteur]
Journal title :
Chemical Engineering Journal
Abbreviated title :
Chemical Engineering Journal
Volume number :
419
Pages :
129633
Publication date :
2021-09
ISSN :
13858947
HAL domain(s) :
Chimie/Catalyse
English abstract : [en]
Kinetic models constitute a useful tool to provide fundamental insights for catalyst development. Single-Event MicroKinetic modelling (SEMK) is a versatile strategy to assess complex reactions with a limited number of ...
Show more >Kinetic models constitute a useful tool to provide fundamental insights for catalyst development. Single-Event MicroKinetic modelling (SEMK) is a versatile strategy to assess complex reactions with a limited number of parameters. Particularly for Fischer–Tropsch synthesis SEMK modelling has focused on explaining the performances of individual catalysts within a wide range of operating conditions. In this work, we extend the capabilities of the SEMK modelling approach to investigate the influence of variation in catalyst properties i.e. catalyst descriptors, on the yield of desired component, light olefins (C2 C4=). We explore the catalyst descriptor space around three literature-reported iron-based catalysts. The three catalyst descriptors, i.e. atomic chemisorption enthalpies of hydrogen (QH), carbon (QC), and oxygen (QO) in the SEMK modelling approach have a combined effect on the conversion, whereas the selectivity to light olefins is found to be less sensitive to QO. These effects can be rationalized in terms of relative surface coverages of different species, leading to different dominant reaction pathways, and thus resulting in product yield variations. Using this approach, a “promising catalyst” with catalyst descriptors, QH 234 kJ/mol, QC 622 kJ/mol and QO 575 kJ/mol resulting in 55% light olefins yield with lower methanation and long-chain hydrocarbon formation, is identified.Show less >
Show more >Kinetic models constitute a useful tool to provide fundamental insights for catalyst development. Single-Event MicroKinetic modelling (SEMK) is a versatile strategy to assess complex reactions with a limited number of parameters. Particularly for Fischer–Tropsch synthesis SEMK modelling has focused on explaining the performances of individual catalysts within a wide range of operating conditions. In this work, we extend the capabilities of the SEMK modelling approach to investigate the influence of variation in catalyst properties i.e. catalyst descriptors, on the yield of desired component, light olefins (C2 C4=). We explore the catalyst descriptor space around three literature-reported iron-based catalysts. The three catalyst descriptors, i.e. atomic chemisorption enthalpies of hydrogen (QH), carbon (QC), and oxygen (QO) in the SEMK modelling approach have a combined effect on the conversion, whereas the selectivity to light olefins is found to be less sensitive to QO. These effects can be rationalized in terms of relative surface coverages of different species, leading to different dominant reaction pathways, and thus resulting in product yield variations. Using this approach, a “promising catalyst” with catalyst descriptors, QH 234 kJ/mol, QC 622 kJ/mol and QO 575 kJ/mol resulting in 55% light olefins yield with lower methanation and long-chain hydrocarbon formation, is identified.Show less >
Language :
Anglais
Audience :
Non spécifiée
Popular science :
Non
Administrative institution(s) :
CNRS
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Collections :
Research team(s) :
Catalyse pour l’énergie et la synthèse de molécules plateforme (CEMOP)
Submission date :
2022-03-24T09:02:22Z
2024-01-16T11:28:05Z
2024-01-16T11:28:05Z
Files
- 8739840.pdf
- Open access
- Access the document