Atomic Layer Deposition of a Nanometer-Thick ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Permalink :
Title :
Atomic Layer Deposition of a Nanometer-Thick Li <sub>3</sub> PO <sub>4</sub> Protective Layer on LiNi <sub>0.5</sub> Mn <sub>1.5</sub> O <sub>4</sub> Films: Dream or Reality for Long-Term Cycling?
Author(s) :
Hallot, Maxime [Auteur]
Caja-Munoz, Borja [Auteur]
Leviel, Clement [Auteur]
Lebedev, Oleg I. [Auteur]
Retoux, Richard [Auteur]
Avila, José [Auteur]
Roussel, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Asensio, Maria Carmen [Auteur]
Lethien, Christophe [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Caja-Munoz, Borja [Auteur]
Leviel, Clement [Auteur]
Lebedev, Oleg I. [Auteur]
Retoux, Richard [Auteur]
Avila, José [Auteur]
Roussel, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Asensio, Maria Carmen [Auteur]
Lethien, Christophe [Auteur]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Journal title :
ACS Applied Materials & Interfaces
Abbreviated title :
ACS Appl. Mater. Interfaces
Volume number :
13
Pages :
15761-15773
Publication date :
2021-03-25
ISSN :
1944-8244, 1944-8252
HAL domain(s) :
Chimie/Chimie inorganique
English abstract : [en]
LiNi0.5Mn1.5O4 (LNMO) is a promising 5V-class electrode for Li-ion batteries but suffers from manganese dissolution and electrolyte decomposition owing to the high working potential. An attractive solution to stabilize the ...
Show more >LiNi0.5Mn1.5O4 (LNMO) is a promising 5V-class electrode for Li-ion batteries but suffers from manganese dissolution and electrolyte decomposition owing to the high working potential. An attractive solution to stabilize the surface chemistry consists in mastering the interface between the LNMO electrode and the liquid electrolyte with a surface protective layer made from the powerful surface deposition method. Here, we show that a 7400 nm thick sputtered LNMO film coated with a nanometer-thick lithium-ion-conductive Li3PO4 layer was deposited by the atomic layer deposition method. We demonstrate that this “material model system” can deliver a remarkable surface capacity (∼0.4 mAh cm–2 at 1C) and exhibits improved cycling lifetime (×650%) compared to the nonprotected electrode. Nevertheless, we observe that mechanical failure occurs within the LNMO and Li3PO4 films when long-term cycling is performed. This in-depth study gives new insights regarding the mechanical degradation of LNMO electrodes upon charge/discharge cycling and reveals for the first time that the surface protective layer made from the ALD method is not sufficient for long-term stability applications.Show less >
Show more >LiNi0.5Mn1.5O4 (LNMO) is a promising 5V-class electrode for Li-ion batteries but suffers from manganese dissolution and electrolyte decomposition owing to the high working potential. An attractive solution to stabilize the surface chemistry consists in mastering the interface between the LNMO electrode and the liquid electrolyte with a surface protective layer made from the powerful surface deposition method. Here, we show that a 7400 nm thick sputtered LNMO film coated with a nanometer-thick lithium-ion-conductive Li3PO4 layer was deposited by the atomic layer deposition method. We demonstrate that this “material model system” can deliver a remarkable surface capacity (∼0.4 mAh cm–2 at 1C) and exhibits improved cycling lifetime (×650%) compared to the nonprotected electrode. Nevertheless, we observe that mechanical failure occurs within the LNMO and Li3PO4 films when long-term cycling is performed. This in-depth study gives new insights regarding the mechanical degradation of LNMO electrodes upon charge/discharge cycling and reveals for the first time that the surface protective layer made from the ALD method is not sufficient for long-term stability applications.Show less >
Language :
Anglais
Audience :
Non spécifiée
Popular science :
Non
Administrative institution(s) :
CNRS
Centrale Lille
ENSCL
ISEN
Institut Catholique Lille
Univ. Artois
Univ. Valenciennes
Université de Lille
Centrale Lille
ENSCL
ISEN
Institut Catholique Lille
Univ. Artois
Univ. Valenciennes
Université de Lille
Collections :
Research team(s) :
Matériaux inorganiques, structures, systèmes et propriétés (MISSP)
Submission date :
2022-03-24T09:02:25Z