Nonlinear sigma models on constant curvature ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Nonlinear sigma models on constant curvature target manifolds: A functional renormalization group approach
Author(s) :
Efremov, Alexander N. [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Rançon, Adam [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Rançon, Adam [Auteur]

Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Journal title :
Physical Review D
Pages :
105003
Publisher :
American Physical Society
Publication date :
2021
ISSN :
2470-0010
English keyword(s) :
renormalization group
flow
splitting
effective action
reparametrization
scale dependence
sigma model: nonlinear
curvature
background field
Ward identity
flow
splitting
effective action
reparametrization
scale dependence
sigma model: nonlinear
curvature
background field
Ward identity
HAL domain(s) :
Physique [physics]/Physique des Hautes Energies - Théorie [hep-th]
English abstract : [en]
We study nonlinear sigma models on target manifolds with constant (positive or negative) curvature using the functional renormalization group and the background field method. We pay particular attention to the splitting ...
Show more >We study nonlinear sigma models on target manifolds with constant (positive or negative) curvature using the functional renormalization group and the background field method. We pay particular attention to the splitting Ward identities associated to the invariance under reparametrization of the background field. Implementing these Ward identities imposes to use the curvature as a formal expansion parameter, which allows us to close the flow equation of the (scale-dependent) effective action consistently to first order in the curvature. We shed new light on previous work using the background field method.Show less >
Show more >We study nonlinear sigma models on target manifolds with constant (positive or negative) curvature using the functional renormalization group and the background field method. We pay particular attention to the splitting Ward identities associated to the invariance under reparametrization of the background field. Implementing these Ward identities imposes to use the curvature as a formal expansion parameter, which allows us to close the flow equation of the (scale-dependent) effective action consistently to first order in the curvature. We shed new light on previous work using the background field method.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Source :
Files
- http://arxiv.org/pdf/2109.09364
- Open access
- Access the document
- 2109.09364
- Open access
- Access the document