Synthesizing dispersion relations in a ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Synthesizing dispersion relations in a modulated tilted optical lattice
Auteur(s) :
Garreau, Jean-Claude [Auteur]
Atomes Froids [Atomes Froids]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Zehnlé, Véronique [Auteur]
Atomes Froids [Atomes Froids]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Zehnlé, Véronique [Auteur]
Titre de la revue :
Physical Review A
Éditeur :
American Physical Society
Date de publication :
2022-01-25
ISSN :
2469-9926
Discipline(s) HAL :
Physique [physics]/Matière Condensée [cond-mat]/Systèmes désordonnés et réseaux de neurones [cond-mat.dis-nn]
Science non linéaire [physics]/Dynamique Chaotique [nlin.CD]
Physique [physics]/Physique Quantique [quant-ph]
Science non linéaire [physics]/Dynamique Chaotique [nlin.CD]
Physique [physics]/Physique Quantique [quant-ph]
Résumé en anglais : [en]
Dispersion relations are fundamental characteristics of the dynamics of quantum and wave systems. In this work we introduce a simple technique to generate arbitrary dispersion relations in a modulated tilted lattice. The ...
Lire la suite >Dispersion relations are fundamental characteristics of the dynamics of quantum and wave systems. In this work we introduce a simple technique to generate arbitrary dispersion relations in a modulated tilted lattice. The technique is illustrated by important examples: the Dirac, Bogoliubov and Landau dispersion relations (the latter exhibiting the roton and the maxon). We show that adding a slow chirp to the lattice modulation allows one to reconstruct the dispersion relation from dynamical quantities. Finally, we generalize the technique to higher dimensions, and generate graphene-like Dirac points and flat bands in two dimensions.Lire moins >
Lire la suite >Dispersion relations are fundamental characteristics of the dynamics of quantum and wave systems. In this work we introduce a simple technique to generate arbitrary dispersion relations in a modulated tilted lattice. The technique is illustrated by important examples: the Dirac, Bogoliubov and Landau dispersion relations (the latter exhibiting the roton and the maxon). We show that adding a slow chirp to the lattice modulation allows one to reconstruct the dispersion relation from dynamical quantities. Finally, we generalize the technique to higher dimensions, and generate graphene-like Dirac points and flat bands in two dimensions.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Commentaire :
9 pages, 6 color figures, submitted to Phys. Rev. A
Source :
Fichiers
- http://arxiv.org/pdf/2107.11268
- Accès libre
- Accéder au document
- 2107.11268
- Accès libre
- Accéder au document