How do the products in methane ...
Document type :
Article dans une revue scientifique: Article original
Title :
How do the products in methane dehydroaromatization impact the distinct stages of the reaction?
Author(s) :
Beuque, Antoine [Auteur]
Institut de chimie des milieux et matériaux de Poitiers [UMR 7285] [IC2MP [Poitiers]]
Hao, Hu [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Berrier, Elise [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Batalha, Nuno [Auteur]
Institut de chimie des milieux et matériaux de Poitiers [UMR 7285] [IC2MP [Poitiers]]
Sachse, Alexander [Auteur]
Institut de chimie des milieux et matériaux de Poitiers [UMR 7285] [IC2MP [Poitiers]]
Paul, Jean-Francois [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Pinard, Ludovic [Auteur]
Institut de chimie des milieux et matériaux de Poitiers [UMR 7285] [IC2MP [Poitiers]]
Institut de chimie des milieux et matériaux de Poitiers [UMR 7285] [IC2MP [Poitiers]]
Hao, Hu [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Berrier, Elise [Auteur]

Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Batalha, Nuno [Auteur]
Institut de chimie des milieux et matériaux de Poitiers [UMR 7285] [IC2MP [Poitiers]]
Sachse, Alexander [Auteur]
Institut de chimie des milieux et matériaux de Poitiers [UMR 7285] [IC2MP [Poitiers]]
Paul, Jean-Francois [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Pinard, Ludovic [Auteur]
Institut de chimie des milieux et matériaux de Poitiers [UMR 7285] [IC2MP [Poitiers]]
Journal title :
Applied Catalysis B: Environmental
Pages :
121274
Publisher :
Elsevier
Publication date :
2022
ISSN :
0926-3373
English keyword(s) :
Zeolite
Methane dehydroaromatization
Molybdenum species
Brønsted acidity
Catalytic activity
Deactivation
methane dehydroaromatization
deactivation molybdenum
carbides
hydrogen
Methane dehydroaromatization
Molybdenum species
Brønsted acidity
Catalytic activity
Deactivation
methane dehydroaromatization
deactivation molybdenum
carbides
hydrogen
HAL domain(s) :
Chimie/Chimie organique
Chimie/Catalyse
Chimie/Catalyse
English abstract : [en]
Among all the proposed catalytic systems (new supports, synthesis post-treatment, new metal transition, multi-metallic catalysts, etc.) for the methane dehydroaromatization, the initial Mo/ZSM-5 has remained one of the ...
Show more >Among all the proposed catalytic systems (new supports, synthesis post-treatment, new metal transition, multi-metallic catalysts, etc.) for the methane dehydroaromatization, the initial Mo/ZSM-5 has remained one of the best suitable catalysts, despite its lack of deep understanding. The catalyst evolves throughout four successive stages: calcination, activation, induction, and deactivation. By studying the balance influence between the acid and metal functions throughout its lifetime, the molybdenum and carbon species could be localized, quantified, and identified as well as their roles. An optimal compromise was then established where the catalyst is composed of 4 wt.% Mo with the highest possible acidity. Below these targets, the catalysts with minimal Mo content and low Brønsted acidity display no significant performances. Once this Mo loading is exceeded, zeolite amorphization occurs independently of the zeolite acidity. Actually, in molybdenum excess, a high amount of water is produced during the activation step. The low space velocity of the water flow, its hightemperature initiate reaction on both metallic and acid catalyst functions leading to molybdenum change of morphology and zeolite dealumination, respectively.Show less >
Show more >Among all the proposed catalytic systems (new supports, synthesis post-treatment, new metal transition, multi-metallic catalysts, etc.) for the methane dehydroaromatization, the initial Mo/ZSM-5 has remained one of the best suitable catalysts, despite its lack of deep understanding. The catalyst evolves throughout four successive stages: calcination, activation, induction, and deactivation. By studying the balance influence between the acid and metal functions throughout its lifetime, the molybdenum and carbon species could be localized, quantified, and identified as well as their roles. An optimal compromise was then established where the catalyst is composed of 4 wt.% Mo with the highest possible acidity. Below these targets, the catalysts with minimal Mo content and low Brønsted acidity display no significant performances. Once this Mo loading is exceeded, zeolite amorphization occurs independently of the zeolite acidity. Actually, in molybdenum excess, a high amount of water is produced during the activation step. The low space velocity of the water flow, its hightemperature initiate reaction on both metallic and acid catalyst functions leading to molybdenum change of morphology and zeolite dealumination, respectively.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-03647187/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03647187/document
- Open access
- Access the document
- document
- Open access
- Access the document
- j.apcatb.2022.121274
- Open access
- Access the document
- draft%20final%20publi%20Tc-1.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- draft%20final%20publi%20Tc-1.pdf
- Open access
- Access the document