Single‐Step Synthesis of Exfoliated ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Single‐Step Synthesis of Exfoliated Ti3C2TxMXene through NaBF4/HCl Etching as Electrode Material for Asymmetric Supercapacitor
Author(s) :
Ghosh, Meena [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Szunerits, Sabine [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Cao, Ning [Auteur]
China University of Petroleum
Kurungot, Sreekumar [Auteur]
Boukherroub, Rabah [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Szunerits, Sabine [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Cao, Ning [Auteur]
China University of Petroleum
Kurungot, Sreekumar [Auteur]
Boukherroub, Rabah [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Journal title :
ChemistrySelect
Publisher :
Wiley
Publication date :
2022-05-19
ISSN :
2365-6549
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
Two-dimensional Ti3C2Tx MXene, derived from the parent Ti3AlC2 phase, is considered a promising electrode material for electrochemical energy storage applications. Ti3C2Tx MXene synthesis methods often employ concentrated ...
Show more >Two-dimensional Ti3C2Tx MXene, derived from the parent Ti3AlC2 phase, is considered a promising electrode material for electrochemical energy storage applications. Ti3C2Tx MXene synthesis methods often employ concentrated hydrofluoric acid (HF), which is harsh, corrosive, and hazardous to the environment. Herein, we report the preparation of Ti3C2Tx MXene following a new synthetic route under a mild reaction condition comprising an aqueous solution of NaBF4 and HCl. This etching environment at a moderate temperature of 130 °C effectively removes the Al layer of the Ti3AlC2 precursor, assisted by the in situ formed HF in the reaction medium. Electron microscopy images of the as-prepared Ti3C2Tx (MX-130) reveal a partially exfoliated nanosheet-like morphology. The material displays a specific capacitance of 262 F g−1 (three-electrode assembly, 1 A g−1, −0.85 to −0.25 V vs. Hg/Hg2SO4) in 1 M H2SO4 electrolyte. The achieved specific capacitance is superior to that of Ti3C2Tx prepared via the common HF-treatment (25 F g−1). Additionally, the potential application of the optimized MXene as a negative electrode material is demonstrated in a quasi-solid-state RuO2|MX-130 asymmetric supercapacitor device.Show less >
Show more >Two-dimensional Ti3C2Tx MXene, derived from the parent Ti3AlC2 phase, is considered a promising electrode material for electrochemical energy storage applications. Ti3C2Tx MXene synthesis methods often employ concentrated hydrofluoric acid (HF), which is harsh, corrosive, and hazardous to the environment. Herein, we report the preparation of Ti3C2Tx MXene following a new synthetic route under a mild reaction condition comprising an aqueous solution of NaBF4 and HCl. This etching environment at a moderate temperature of 130 °C effectively removes the Al layer of the Ti3AlC2 precursor, assisted by the in situ formed HF in the reaction medium. Electron microscopy images of the as-prepared Ti3C2Tx (MX-130) reveal a partially exfoliated nanosheet-like morphology. The material displays a specific capacitance of 262 F g−1 (three-electrode assembly, 1 A g−1, −0.85 to −0.25 V vs. Hg/Hg2SO4) in 1 M H2SO4 electrolyte. The achieved specific capacitance is superior to that of Ti3C2Tx prepared via the common HF-treatment (25 F g−1). Additionally, the potential application of the optimized MXene as a negative electrode material is demonstrated in a quasi-solid-state RuO2|MX-130 asymmetric supercapacitor device.Show less >
Language :
Anglais
Popular science :
Non
Source :