Railway Obstacle Detection Using Unsupervised ...
Type de document :
Communication dans un congrès avec actes
Titre :
Railway Obstacle Detection Using Unsupervised Learning: An Exploratory Study
Auteur(s) :
Boussik, Amine [Auteur]
L'Institut de Recherche Technologique (IRT) de la filière Ferroviaire [IRT Railenium]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Ben Messaoud, Wael [Auteur]
L'Institut de Recherche Technologique (IRT) de la filière Ferroviaire [IRT Railenium]
Niar, Smail [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Tahleb Ahmed, Abdelmalik [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
L'Institut de Recherche Technologique (IRT) de la filière Ferroviaire [IRT Railenium]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Ben Messaoud, Wael [Auteur]
L'Institut de Recherche Technologique (IRT) de la filière Ferroviaire [IRT Railenium]
Niar, Smail [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Tahleb Ahmed, Abdelmalik [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la manifestation scientifique :
32nd IEEE Intelligent Vehicles Symposium (IV'21)
Ville :
Nagoya
Pays :
Japon
Date de début de la manifestation scientifique :
2021-07-11
Titre de la revue :
2021 IEEE Intelligent Vehicles Symposium (IV)
Éditeur :
IEEE
Mot(s)-clé(s) en anglais :
Training
Rails
Measurement
Decision making
Rail transportation
Real-time systems
Unsupervised learning
Rails
Measurement
Decision making
Rail transportation
Real-time systems
Unsupervised learning
Discipline(s) HAL :
Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Apprentissage [cs.LG]
Résumé en anglais : [en]
Autonomous Driving (AD) systems are heavily reliant on supervised models. In these approaches, a model is trained to detect only a predefined number of obstacles. However, for applications like railway obstacle detection, ...
Lire la suite >Autonomous Driving (AD) systems are heavily reliant on supervised models. In these approaches, a model is trained to detect only a predefined number of obstacles. However, for applications like railway obstacle detection, the training dataset is limited and not all possible obstacle classes are known beforehand. For such safety-critical applications, this situation is problematic and could limit the performance of obstacle detection in autonomous trains. In this paper, we propose an exploratory study using unsupervised models based on a large set of generated convolutional autoencoder models to detect obstacles on railway's track level. The study was conducted based on three components: loss functions, activations and optimizers. Existing works rely on fixing thresholds to judge the performance of the model. We propose instead a methodology based on Multi-Criteria Decision Making (MCDM) to evaluate the performance of all models. Furthermore, we introduce the notion of gap-score to evaluate each model by calculating the average difference between the reconstruction score on images with and without obstacles. The aim is to find models maximizing the average of gap-scores and rank them according to their performances. Experimental results show that the evaluated models can provide up to 68 % average gap-scoreLire moins >
Lire la suite >Autonomous Driving (AD) systems are heavily reliant on supervised models. In these approaches, a model is trained to detect only a predefined number of obstacles. However, for applications like railway obstacle detection, the training dataset is limited and not all possible obstacle classes are known beforehand. For such safety-critical applications, this situation is problematic and could limit the performance of obstacle detection in autonomous trains. In this paper, we propose an exploratory study using unsupervised models based on a large set of generated convolutional autoencoder models to detect obstacles on railway's track level. The study was conducted based on three components: loss functions, activations and optimizers. Existing works rely on fixing thresholds to judge the performance of the model. We propose instead a methodology based on Multi-Criteria Decision Making (MCDM) to evaluate the performance of all models. Furthermore, we introduce the notion of gap-score to evaluate each model by calculating the average difference between the reconstruction score on images with and without obstacles. The aim is to find models maximizing the average of gap-scores and rank them according to their performances. Experimental results show that the evaluated models can provide up to 68 % average gap-scoreLire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Source :
Fichiers
- https://hal-uphf.archives-ouvertes.fr/hal-03379755/document
- Accès libre
- Accéder au document
- https://hal-uphf.archives-ouvertes.fr/hal-03379755/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Boussik2021.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Boussik2021.pdf
- Accès libre
- Accéder au document